cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001393 High temperature series for spin-1/2 Ising free energy on 3-dimensional simple cubic lattice.

Original entry on oeis.org

1, 0, 3, 22, 192, 2046, 24853, 329334, 4649601, 68884356, 1059830112, 16809862992, 273374177222, 4539862959852, 76744615270821, 1317316023432372, 22913901542478978, 403242080061821802, 7169757254509112094, 128654570700129670404, 2327634530912450464791, 42424918919225263486322, 778469235834728913157632, 14371906938404203811137770
Offset: 0

Views

Author

Keywords

Comments

z = exp(-f/T) = 2 * cosh(K)^3 * Sum_{n >= 0} a(n) * v^(2*n) where v = tanh(K), K = J/T, T is temperature (in the units of energy), J is the nearest-neighbor interaction, and f is the free energy per spin. See Wipf, pp. 181-182. z is the [geometric average] partition function per spin, so the original name of this entry, "Partition function for cubic lattice", is somewhat more directly related to this sequence. - Andrey Zabolotskiy, Oct 18 2021

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Andreas Wipf, Statistical Approach to Quantum Field Theory, LNP 864, Springer, 2013.

Crossrefs

Extensions

Corrections and updates from Steven Finch
a(14)-a(23) from Andrey Zabolotskiy, Oct 18 2021

A002926 Low temperature series for spin-1/2 Ising magnetic susceptibility on 3-dimensional simple cubic lattice.

Original entry on oeis.org

0, 0, 1, 0, 12, -14, 135, -276, 1520, -4056, 17778, -54392, 213522, -700362, 2601674, -8836812, 31925046, -110323056, 393008712, -1369533048, 4844047090, -16947396000, 59723296431, -209328634116, 736260986208, -2582605180212, 9074182912884
Offset: 1

Views

Author

Keywords

References

  • C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 421.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. Vohwinkel, personal communication.

Crossrefs

Cf. A002913 (high temperature series); other quantities: A002915 (antiferromagnetic susceptibility), A002891 (partition function), A002929 (magnetization); other lattices: A002927 (square), A002924 (f.c.c.), A002925 (b.c.c.).

Extensions

Corrections and updates from Steven Finch
a(25)-a(27) from Bhanot et al. added by Andrei Zabolotskii, Feb 09 2022

A002890 Low temperature series for spin-1/2 Ising partition function on 2D square lattice.

Original entry on oeis.org

1, 0, 1, 2, 5, 14, 44, 152, 566, 2234, 9228, 39520, 174271, 787246, 3628992, 17019374, 81011889, 390633382, 1905134695, 9385453576, 46653815395, 233788460256, 1180111379105, 5996452414310, 30653752894948
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002891.

Programs

  • Mathematica
    (* For 25 terms, a PC computation lasts less than half an hour *) m = 48 (* max y exponent *); coes = CoefficientList[ Series[ Log[(1 + y^2)^2 - 2*y*(1 - y^2)*(Cos[2*Pi*u] + Cos[2*Pi*v])], {y, 0, m}], y] // Rest; nint[f_, {n_}] := If[n == 2 || OddQ[n], 0, Print[n]; Integrate[ Integrate[f, {u, 0, 1}], {v, 0, 1}]]; fy = MapIndexed[nint, coes].Table[y^k, {k, 1, m}]; CoefficientList[ Series[ Exp[fy/2], {y, 0, m}] , y^2] (* Jean-François Alcover, Mar 19 2013 *)
    CoefficientList[(1+u) Exp[-x HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16x] /. {x -> (u (1 - u)^2)/(1 + u)^4}] + O[u]^50, u] (* Andrey Zabolotskiy, Feb 12 2022, using the g. f. from Gandhimohan M. Viswanathan, 2014-2015 *)

Formula

a(n) ~ exp(2*G/Pi) * (1 + sqrt(2))^(2*n-1) / (Pi*sqrt(2)*n^3), where G is the Catalan's constant A006752. - Vaclav Kotesovec, May 02 2024

Extensions

Corrections and updates from Steven Finch
"Free energy" changed back to "partition function" (basically the exponential of the free energy) in the name by Andrey Zabolotskiy, Feb 11 2022

A002892 Low-temperature series for partition function for spin-1/2 Ising model on f.c.c. lattice.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, -6, 0, 0, 8, 42, -114, 66, 24, 123, 134, -1563, 2262, -405, 846, -2532, -15182, 47961, -37992, 8044, -59694, -57117, 742394, -1233840, 597456, -798392, 1447162, 7898736, -27134598, 27649335
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001407 (high-temperature), A002891 (cubic lattice), A002924 (susceptibility), A003196 (magnetization).

Extensions

Name clarified, missing minus signs added to a(12) and a(17), and terms a(22) and beyond added by Andrey Zabolotskiy, Feb 14 2022

A030045 Low temperature series for spin-1/2 Ising partition function on 4D simple cubic lattice.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 4, -4, 0, 28, -60, 38, 228, -798, 1036, 1528, -10064, 20266, -432, -116414, 342376, -312232, -1128944, 5218867, -8614080, -6284630, 71744552, -175745087, 80875672, 855493548, -3086044908, 3923353016, 7675455720, -48219069200
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • C. Vohwinkel, personal communication.

Crossrefs

Extensions

"Free energy" corrected to "partition function" (basically the exponential of the free energy) in the name by Andrey Zabolotskiy, Feb 12 2022
a(33)-a(34) using Vohwinkel & Weisz's data added by Andrey Zabolotskiy, Aug 10 2022

A371049 Low temperature series for spin-1/2 Ising partition function on body-centered cubic lattice.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 4, -4, 0, 28, -60, 44, 204, -750, 1084, 979, -8444, 18886, -7568, -82269, 280288, -348172, -576712, 3677331, -7445964, 569558, 41740944, -126624684
Offset: 1

Views

Author

Andrey Zabolotskiy, Mar 11 2024

Keywords

Comments

The series is in the variable u = exp(-4J/kT).
The expansion of the logarithm of the g.f. of this sequence is given in Domb & Guttmann's Table 1 (with a reference to Sykes et al., 1965) and continued in Eq. (4.14) of Sykes et al., 1973.

References

  • Claude Itzykson and Jean-Michel Drouffe, Statistical field theory, vol. 2, Cambridge University Press, 1989. Eq. (120) is supposed to give the logarithm of the g.f., but its second half is erroneously switched with the second half of Eq. (121). These second halves are Eqs. (4.15) and (4.14) of Sykes et al., 1973.

Crossrefs

Cf. A002891 (simple cubic), A002892 (f.c.c.); A003193 (magnetization), A002925 (ferromagnetic susceptibility), A007218 (antiferromagnetic susceptibility); A001406 (high temperature).
Showing 1-6 of 6 results.