cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002909 Low temperature energy function for square lattice.

Original entry on oeis.org

2, 0, -8, -24, -72, -240, -896, -3640, -15688, -70512, -326968, -1553288, -7523520, -37026704, -184677536, -931655064, -4746324296, -24387839056, -126257024696, -658011767016, -3449826712952, -18183760406080, -96309365029424, -512340286827272
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    u:=v->((1+v^2)*(1-(2/Pi)*(1-6*v^2+v^4)*EllipticK(4*v*(1-v^2)/(1+v^2)^2)/(1+v^2)^2)/2*v):
    S:= series(u((1-v)/(1+v))/((1-v)/(1+v))^2,v,101):
    seq(coeff(S,v,j),j=0..100,2); # Sean A. Irvine, Nov 27 2017
  • Mathematica
    Table[SeriesCoefficient[(1 + v)/(1 - v)^3 ((1 - v)^2 + 2/Pi (1 - 6 v + v^2) EllipticK[(16 v^2)/(1 - v)^4]), {v, 0, k}], {k, 0, 100}] (* Jan Mangaldan, Nov 28 2020 *)

Formula

G.f.: (1+x)/(1-x) + ((1-6*x+x^2)/(1-x^2))*Sum_{k>=0} (2*k)!^2 * (x*(1-x)^2/(1+x)^4)^k/k!^4. - Robert Israel, Nov 27 2017
a(n) ~ -2 * (1 + sqrt(2))^(2*n) / (Pi*n^2). - Vaclav Kotesovec, Nov 28 2017

Extensions

More terms from Sean A. Irvine, Nov 27 2017