A002974 Number of restricted solid partitions of n.
1, 1, 4, 7, 11, 20, 35, 59, 99, 165, 270, 443, 723, 1161, 1861, 2961, 4654, 7279, 11317, 17476, 26879, 41132, 62601, 94878, 143172, 215115, 321995, 480216, 713655, 1057192
Offset: 1
Examples
From _Gus Wiseman_, Jan 22 2019: (Start) The a(1) = 1 through a(6) = 20 restricted solid partitions, represented as chains of chains of integer partitions: ((1)) ((2)) ((3)) ((4)) ((5)) ((6)) ((21)) ((31)) ((32)) ((42)) ((2)(1)) ((3)(1)) ((41)) ((51)) ((2))((1)) ((21)(1)) ((3)(2)) ((321)) ((3))((1)) ((4)(1)) ((4)(2)) ((21))((1)) ((31)(1)) ((5)(1)) ((2)(1))((1)) ((3))((2)) ((31)(2)) ((4))((1)) ((32)(1)) ((31))((1)) ((41)(1)) ((3)(1))((1)) ((4))((2)) ((21)(1))((1)) ((5))((1)) ((31))((2)) ((3)(2)(1)) ((32))((1)) ((41))((1)) ((3)(1))((2)) ((3)(2))((1)) ((4)(1))((1)) ((31)(1))((1)) ((3))((2))((1)) (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- H. Gupta, Restricted solid partitions, J. Combin. Theory, A 13 (1972), 140-144.
Crossrefs
Programs
-
Mathematica
srcplptns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And[And@@(GreaterEqual@@@Transpose[PadRight[#]]),And@@Greater@@@#,And@@(Greater@@@DeleteCases[Transpose[PadRight[#]],0,{2}])]&],{ptn,IntegerPartitions[n]}]; srcsolids[n_]:=Join@@Table[Select[Tuples[srcplptns/@y],And[And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)]),And@@(Greater@@@DeleteCases[Transpose[Join@@@(PadRight[#,{n,n}]&/@#)],0,{2}])]&],{y,IntegerPartitions[n]}] Table[Length[srcsolids[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)
Extensions
More terms from Sean A. Irvine, Dec 15 2014
Comments