A003000 Number of bifix-free (or primary, or unbordered) words of length n over a two-letter alphabet.
1, 2, 2, 4, 6, 12, 20, 40, 74, 148, 284, 568, 1116, 2232, 4424, 8848, 17622, 35244, 70340, 140680, 281076, 562152, 1123736, 2247472, 4493828, 8987656, 17973080, 35946160, 71887896, 143775792, 287542736, 575085472, 1150153322, 2300306644, 4600578044, 9201156088
Offset: 0
Examples
Bi-fix free words of lengths 1 through 4: 0, 1 10, 01 100, 110, 011, 001 1000, 1100, 1110, 0111, 0011, 0001.
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 28.
- M. Lothaire, Combinatorics on Words, Cambridge University Press, NY, 1997, see p. 153.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3323 (first 501 terms from T. D. Noe)
- E. Barcucci, A. Bernini, S. Bilotta and R. Pinzani, Cross-bifix-free sets in two dimensions, arXiv preprint arXiv:1502.05275 [cs.DM], 2015.
- S. Bilotta, E. Pergola and R. Pinzani, A new approach to cross-bifix-free sets, arXiv preprint arXiv:1112.3168 [cs.FL], 2011.
- G. Blom, Problem 94-20: Overlapping binary sequences, SIAM Review 37 (1995), 619-620.
- Joshua Cooper and Danny Rorabaugh, Asymptotic Density of Zimin Words, arXiv preprint arXiv:1510.03917 [math.CO], 2015-2016.
- Daniel Gabric and Jeffrey Shallit, Borders, Palindrome Prefixes, and Square Prefixes, arXiv:1906.03689 [cs.DM], 2019.
- O. Georgiou, C. P. Dettmann and E. G. Altmann, Faster than expected escape for a class of fully chaotic maps, arXiv preprint arXiv:1207.7000 [nlin.CD], 2012. - From _N. J. A. Sloane_, Dec 23 2012
- D. J. Greaves and S. J. Montgomery-Smith, Unforgeable Marker Sequences.
- L. J. Guibas and A. M. Odlyzko, Periods in Strings, Journal of Combinatorial Theory A 30 (1981) 19-42. Their L_n(0) is A003000(n).
- H. Harborth, Endliche 0-1-Folgen mit gleichen Teilblöcken, J. für Reine Angewandte Math. 271 (1974), 139-154, see p. 143.
- T. Harju and D. Nowotka, Border correlation of binary words.
- P. Tolstrup Nielsen, A note on bifix-free sequences, IEEE Trans. Info. Theory IT-19 (1973), 704-706. [pdf]
- Jakob Radoszewski, Wojciech Rytter, and Tomasz Waleń, Faster Algorithms for Ranking/Unranking Bordered and Unbordered Words, Int'l Symp. String Proc. Info. Retrieval (2024), Springer, Cham, LNCS Vol. 14899, 257-271.
- N. Rampersad, J. Shallit, and M.-w. Wang, Inverse star, borders, and palstars, Info. Proc. Letters 111 (2011), 420-422. - _Jeffrey Shallit_, Aug 14 2014
- N. Rampersad, J. Shallit, and M.-w. Wang, Inverse star, borders, and palstars, arXiv:1008.2440 [cs.FL], 2010.
- D. Rorabaugh, Toward the Combinatorial Limit Theory of Free Words, arXiv preprint arXiv:1509.04372 [math.CO], 2015.
- Sarah Nibs, Java program for this sequence and A122536.
Crossrefs
Programs
-
Maple
A[0]:= 1: for n from 1 to 100 do if n::odd then A[n]:= 2*A[n-1] else A[n]:= 2*A[n-1]-A[n/2] fi od: seq(A[n],n=0..100); # Robert Israel, Aug 14 2014
-
Mathematica
a[0]=1;a[n_]:=a[n]=2*a[n-1]-(1+(-1)^n)/2*a[Floor[n/2]]; Table[a[n], {n, 0, 34}] a[0]=1; a[n_]:=a[n]=2*a[n-1]-If[EvenQ[n], a[n/2], 0] (* Ed Pegg Jr, Jan 05 2005 *)
Formula
a(2*n+1) = 2*a(2*n), a(2*n) = 2*a(2*n-1) - a(n).
a(n)/2^n converges to A242430.
a(0)=1; a(n)=2*a(n-1)-(1/2)*(1+(-1)^n)*a([n/2]). - Farideh Firoozbakht, Jun 10 2004
G.f.: g(x) satisfies (1-2*x)*g(x) = 2 - g(x^2). - Robert Israel, Jan 12 2015
Extensions
New description and reference from Jeffrey Shallit, Sep 15 1996
Additional comments from Torsten.Sillke(AT)lhsystems.com, Jan 17 2001
More terms from Farideh Firoozbakht, Jun 10 2004
Comments