cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003015 Numbers that occur 5 or more times in Pascal's triangle.

Original entry on oeis.org

1, 120, 210, 1540, 3003, 7140, 11628, 24310, 61218182743304701891431482520
Offset: 1

Views

Author

Keywords

Comments

The subject of a recent thread on sci.math. Apparently it has been known for many years that there are infinitely many numbers that occur at least 6 times in Pascal's triangle, namely the solutions to binomial(n,m-1) = binomial(n-1,m) given by n = F_{2k}*F_{2k+1}; m = F_{2k-1}*F_{2k} where F_i is the i-th Fibonacci number. The first of these outside the range of the existing database entry is {104 choose 39} = {103 choose 40} = 61218182743304701891431482520. - Christopher E. Thompson, Mar 09 2001
It may be that there are no terms that appear exactly 5 times in Pascal's triangle, in which case the title could be changed to "Numbers that occur 6 or more times in Pascal's triangle". - N. J. A. Sloane, Nov 24 2004
No other terms below 33*10^16 (David W. Wilson).
61218182743304701891431482520 really is the next term. Weger shows this and I checked it. - T. D. Noe, Nov 15 2004
Blokhuis et al. show that there are no other solutions less than 10^60, nor within the first 10^6 rows of Pascal's triangle other than those given by the parametric solution mentioned above. - Christopher E. Thompson, Jan 19 2018
See the b-file of A090162 for the explicit numbers produced by the parametric formula. - Jeppe Stig Nielsen, Aug 23 2020

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 93, #47.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A182237, A098565 (subsequence).
Cf. A090162 (easy subsequence).