A001654 Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A003016 Number of occurrences of n as an entry in rows <= n of Pascal's triangle (A007318).
0, 3, 1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Comments
Or, number of occurrences of n as a binomial coefficient. [Except for 1 which occurs infinitely many times. This is the only reason for the restriction "row <= n" in the definition. Any other number can only appear in rows <= n. - M. F. Hasler, Feb 16 2023]
Sequence A138496 gives record values and where they occur. - Reinhard Zumkeller, Mar 20 2008
Singmaster conjectures that this sequence is bounded. - Michael J. Hardy, Jun 09 2025
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 93, #47.
- C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- H. L. Abbott, P. Erdős and D. Hanson, On the numbers of times an integer occurs as a binomial coefficient, Amer. Math. Monthly, (1974), 256-261.
- Daniel Kane, New Bounds on the Number of Representations of t as a Binomial Coefficient, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper A7, 2004.
- Kaisa Matomäki, Maksym Radziwill, Xuancheng Shao, Terence Tao, and Joni Teräväinen, Singmaster's conjecture in the interior of Pascal's triangle, arXiv:2106.03335 [math.NT], 2021.
- D. Singmaster, How often does an integer occur as a binomial coefficient?, Amer. Math. Monthly, 78 (1971), 385-386.
- Eric Weisstein's World of Mathematics, Pascal's Triangle
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a003016 n = sum $ map (fromEnum . (== n)) $ concat $ take (fromInteger n + 1) a007318_tabl -- Reinhard Zumkeller, Apr 12 2012
-
Mathematica
a[0] = 0; t = {{1}}; a[n_] := Count[ AppendTo[t, Table[ Binomial[n, k], {k, 0, n}]], n, {2}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Feb 20 2012 *)
-
PARI
{A003016(n)=if(n<4, [0,3,1,2][n+1], my(c=2, k=2, r=sqrtint(2*n)+1, C=r*(r-1)/2); until(, while(C
= r\2 && break; C *= r-k; C \= r; r -= 1); c)} \\ M. F. Hasler, Feb 16 2023 -
Python
from math import isqrt # requires python3.8 or higher def A003016(n): if n < 4: return[0,3,1,2][n] cnt = k = 2; r = isqrt(2*n)+1; C = r*(r-1)//2 while True: while C < n and k < r//2: C *= r-k; k += 1; C //= k if C == n: cnt += 2 - (r == 2*k) if k >= r//2: return cnt C *= r-k; C //= r; r -= 1 # M. F. Hasler, Feb 16 2023
Extensions
More terms from Erich Friedman
Edited by N. J. A. Sloane, Nov 18 2007, at the suggestion of Max Alekseyev
A059233 Number of rows in which n appears in Pascal's triangle A007318.
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2
Comments
Central binomial coefficients c = A000984(n) > 1 appear once in the middle column C(2n, n), and thereafter in one or more later rows to the left as C(r,k) and to the right as C(r, r-k), k < r/2; the last time in row r = c = C(c,1) = C(c,c-1). For these, a(n) = (A003016(n)+1)/2. For all other numbers n > 1, a(n) = A003016(n)/2. - M. F. Hasler, Mar 01 2023
Examples
6 appears in both row 4 and row 6 in Pascal's triangle, therefore a(6) = 2.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 93, #47.
- C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 96.
Links
- T. D. Noe, Table of n, a(n) for n=2..10000
- D. Singmaster, How often does an integer occur as a binomial coefficient?, Amer. Math. Monthly, 78 (1971), 385-386.
- Eric Weisstein's World of Mathematics, Pascal's Triangle
- Wikipedia, Singmaster's conjecture
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a059233 n = length $ filter (n `elem`) $ take (fromInteger n) $ tail a007318_tabl a059233_list = map a059233 [2..] -- Reinhard Zumkeller, Dec 24 2012
-
Mathematica
nmax = 101; A007318 = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, n}]; a[n_] := Position[A007318, n][[All, 1]] // Union // Length; Table[a[n], {n, 2, nmax}] (* Jean-François Alcover, Sep 09 2013 *)
-
PARI
A059233(n)=A003016(n)\/2 \\ M. F. Hasler, Mar 01 2023
Formula
a(A180058(n)) = n and a(m) < n for m < A180058(n); a(A182237(n)) = 2; a(A098565(n)) = 3. - Reinhard Zumkeller, Dec 24 2012
a(n) = ceiling(A003016(n)/2). - M. F. Hasler, Mar 01 2023
A098565 Numbers that appear as binomial coefficients exactly 6 times.
120, 210, 1540, 7140, 11628, 24310, 61218182743304701891431482520
Offset: 1
Links
- Jean-Marie de Koninck, Nicolas Doyon, and William Verreault, Repetitions of multinomial coefficients and a generalization of Singmaster's conjecture, arXiv:2107.09107 [math.NT], 2021.
- Zoe Griffiths, My MegaFavNumber: 61,218,182,743,304,701,891,431,482,520, YouTube video, 2020.
- David Singmaster, How Often Does An Integer Occur As A Binomial Coefficient?, American Mathematical Monthly, 78(4), 1971, pp. 385-386; also on Fermat's Library.
- Wikipedia, Singmaster's conjecture
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a098565 n = a098565_list !! (n-1) a098565_list = map (+ 2 ) $ elemIndices 3 a059233_list -- Reinhard Zumkeller, Dec 24 2012
Formula
A059233(a(n)) = 3. - Reinhard Zumkeller, Dec 24 2012
Extensions
a(7) from T. D. Noe, Jul 13 2005
A090162 Values of binomial(Fibonacci(2k)*Fibonacci(2k+1),Fibonacci(2k-1)*Fibonacci(2k)-1).
1, 3003, 61218182743304701891431482520
Offset: 1
Comments
These numbers are known to occur at least six times in Pascal's triangle.
The next term is approximately 3.537 * 10^204 and is in the b-file.
The numbers of digits in a(n), n >= 1, are given in A100022.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..5
- A. I. Shirshov, On the equation C(n, m) = C(n+1, m-1), chapter 10 in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am. Math. Soc., 1999, pp. 83-86
- D. Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quarterly, 13 (1975), 295-298.
- Eric Weisstein's World of Mathematics, Pascal's Triangle
Programs
-
Maple
a := proc(n) local a,b,s,p; s:= 1+sqrt(5); p:=16^n; a := 4-2*p*s^(-4*n-1)+(s+2)*s^(4*n-1)/p: b := 1+p*((s-2)^(1-4*n)/2-s^(-1-4*n)*(2+s)): GAMMA(a/5)/(GAMMA(b/5)*GAMMA(1+(a-b)/5)) end: digits := [1, 4, 29, 205, 1412]: A := n -> round(evalf(a(n),digits[n]+10)): A(4); # Peter Luschny, Jul 15 2017
-
Mathematica
Table[Binomial[Fibonacci[2k]Fibonacci[2k+1],Fibonacci[2k-1] Fibonacci[2k]-1], {k,4}] (* Harvey P. Dale, Aug 18 2011 *)
-
PARI
A090162(n)=binomial(fibonacci(2*n+1)*fibonacci(2*n),fibonacci(2*n-1)*fibonacci(2*n)-1) \\ M. F. Hasler, Feb 17 2023
-
Python
def A090162(n): return C(A000045(2*n+1)*A000045(2*n),A000045(2*n-1)*A000045(2*n)-1) # See A007318 for C(.,.). - M. F. Hasler, Feb 17 2023
A022911 Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m/2) in increasing order (not removing duplicates); record the sequence of m's.
4, 5, 6, 6, 7, 8, 7, 9, 10, 11, 8, 12, 8, 13, 9, 14, 15, 16, 10, 9, 17, 18, 11, 19, 20, 21, 10, 12, 22, 10, 23, 24, 13, 25, 26, 11, 27, 14, 28, 29, 30, 15, 11, 31, 12, 32, 33, 16, 34, 35, 36, 37, 17, 38, 13, 39, 40, 12, 18, 41, 42, 43, 12, 44, 19, 45, 14, 46, 47, 48
Offset: 1
Keywords
Comments
In case of duplicates, the m values are listed in decreasing order. Thus a(18)=16 and a(19)=10 corresponding to binomial(16,2)=binomial(10,3)=120. - Robert Israel, Sep 18 2018
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Sean A. Irvine, Java program (github)
Programs
-
Maple
N:= 10000: # for binomial(n,k) values <= N Res:= NULL: for n from 2 while n*(n-1)/2 <= N do for k from 2 to n/2 do v:= binomial(n,k); if v > N then break fi; Res:= Res,[v,n,k] od od: Res:= sort([Res],proc(p,q) if p[1]<>q[1] then p[1]
q[2] then p[2]>q[2] fi end proc): map(t -> t[2], Res); # Robert Israel, Sep 18 2018
Formula
A022912 Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m/2) in increasing order (not removing duplicates); record the sequence of k's.
2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 2, 4, 2, 2, 5, 3, 2, 2, 2, 6, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 6, 2, 3, 4, 2, 2, 2, 5, 2, 3, 2, 2, 2
Offset: 1
Keywords
Comments
In case of duplicates, the k values are listed in increasing order. Thus a(18)=2 and a(19)=3 corresponding to binomial(16,2)=binomial(10,3)=120.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # for binomial(n, k) values <= N Res:= NULL: for n from 2 while n*(n-1)/2 <= N do for k from 2 to n/2 do v:= binomial(n, k); if v > N then break fi; Res:= Res, [v, n, k] od od: Res:= sort([Res], proc(p, q) if p[1]<>q[1] then p[1]
q[2] then p[2]>q[2] fi end proc): map(t -> t[3], Res); # Robert Israel, Sep 18 2018
Formula
Extensions
Corrected by Robert Israel, Sep 18 2018
A064224 Numbers having more than one representation as the product of consecutive integers > 1.
120, 210, 720, 5040, 175560, 17297280, 19958400, 259459200, 20274183401472000, 25852016738884976640000, 368406749739154248105984000000
Offset: 1
Comments
Solutions to the equations: x(x+1)...(x+m)=y(y+1)...(y+n) with x>1, y>1.
Some patterns are impossible, e.g. x(x+1)(x+2)(x+3)=y(y+1) has been proved impossible.
The early terms in this sequence each have two representations. Is two the maximum possible? The sequence is infinite: for any n, the number n*(n+1)*...*(n^2+n-1) is in this sequence. The next number of this form is 20274183401472000, which is obtained when n=4. - T. D. Noe, Nov 22 2004
Using an improved algorithm I have performed an exhaustive search up to 2.15 * 10^33 and can confirm the terms shown above are all that exist up to that point. For all k = A002378(n) > 2 we can construct a member of this sequence by equating n(n+1)(n+2)...(k-1) to (n+2)(n+3)...(k-1)k. Also, as demonstrated in my examples below, 5040 is related to 720 as 259459200 is to 210. So we also know that 36055954861352887137197787308347629783163600896000000000 and 6244042313569035223343873483125151604764341428027427022254596874567680000000000000 are terms. - Robert Munafo, Aug 17 2007 [edited by Peter Munn, Aug 20 2023]
MacLeod and Barrodale prove that the equation x(x+1)...(x+m-1) = y(y+1)...(y+n-1) has no solutions x>1 and y>1 for the following pairs of (m,n): (2,4), (2,6), (2,8), (2,12), (4,8), (5,10). They also show that (2,3) has two solutions and (3,6) has one solution. They conjecture that (2,k) has no solution for k>3. [T. D. Noe, Jul 29 2009]
Examples
120 is here because 120 = 2*3*4*5 = 4*5*6. a(2)=210 because we can write 210=5*6*7 or 14*15. The term a(8) = 259459200 = 5*6*7*8*9*10*11*12*13 = 8*9*10*11*12*13*14*15 is related to 210 by adding the intervening integers (8 through 13) to both products.
Links
- H. L. Abbott, P. Erdos and D. Hanson, On the numbers of times an integer occurs as a binomial coefficient, Amer. Math. Monthly, (March 1974), 256-261.
- R. A. MacLeod and I. Barrodale, On equal products of consecutive integers, Canad. Math. Bull., 13 (1970) 255-259. [_T. D. Noe_, Jul 29 2009]
- Robert Munafo, Page dealing with this sequence
Crossrefs
Programs
-
Mathematica
nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, 2, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]-1}]; Union[lst]
-
Python
import heapq def aupton(terms, verbose=False): p = 2*3; h = [(p, 2, 3)]; nextcount = 4; alst = []; oldv = None while len(alst) < terms: (v, s, l) = heapq.heappop(h) if v == oldv and v not in alst: alst.append(v) if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i = Prod_{{i = {olds}..{oldl}}} i]") if v >= p: p *= nextcount heapq.heappush(h, (p, 2, nextcount)) nextcount += 1 oldv, olds, oldl = v, s, l v //= s; s += 1; l += 1; v *= l heapq.heappush(h, (v, s, l)) return alst print(aupton(8, verbose=True)) # Michael S. Branicky, Jun 24 2021
Extensions
a(1), a(7) and a(8) from T. D. Noe, Nov 22 2004
a(9) and a(10) from Robert Munafo, Aug 13 2007
a(11) from Robert Munafo, Aug 17 2007
Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar
A180058 Smallest number occurring in exactly n rows of Pascal's triangle.
2, 6, 120, 3003
Offset: 1
Examples
. n A180058 referred equal binomial coefficients (A007318) A059233 . - ------- ---------------------------------------------- ------- . 1 2 C (2, 1) 1 . 2 6 C (4, 2) C (6, 1) 2 . 3 120 C (10, 3) C (16, 2) C (120, 1) 3 . 4 3003 C (14, 6) C (15, 5) C (78, 2) C (3003, 1) 4 .
Links
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a180058 = (+ 2) . fromJust . (`elemIndex` a059233_list)
A100934 Numbers having more than one representation as the product of consecutive integers.
6, 24, 120, 210, 720, 5040, 40320, 175560, 362880, 3628800, 17297280, 19958400, 39916800, 259459200, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 20274183401472000, 121645100408832000
Offset: 1
Keywords
Comments
All the factorials occur because we allow products to start with 1. See A064224 for a more restrictive case.
Examples
120 is a term since 120 = 1*2*3*4*5 = 2*3*4*5 = 4*5*6. 210 is a term since 210 = 14*15 = 5*6*7. Other non-factorial terms are: 175560 = Product_{i=55..57} i = Product_{i=19..22} i, 17297280 = Product_{i=63..66} i = Product_{i= 8..14} i, 19958400 = Product_{i= 5..12} i = Product_{i= 3..11} i, 259459200 = Product_{i= 8..15} i = Product_{i= 5..13} i, 20274183401472000 = Product_{i=6..20} i = Product_{i=4..19} i.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..26
- H. L. Abbott, P. Erdos and D. Hanson, On the numbers of times an integer occurs as a binomial coefficient, Amer. Math. Monthly, (March 1974), 256-261.
Programs
-
Mathematica
nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]-1}]; Union[lst]
-
Python
import heapq def aupton(terms, verbose=False): p = 1*2; h = [(p, 1, 2)]; nextcount = 3; alst = []; oldv = None while len(alst) < terms: (v, s, l) = heapq.heappop(h) if v == oldv and v not in alst: alst.append(v) if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i = Prod_{{i = {olds}..{oldl}}} i]") if v >= p: p *= nextcount heapq.heappush(h, (p, 1, nextcount)) nextcount += 1 oldv, olds, oldl = v, s, l v //= s; s += 1; l += 1; v *= l heapq.heappush(h, (v, s, l)) return alst print(aupton(20, verbose=True)) # Michael S. Branicky, Jun 24 2021
Extensions
a(18) and beyond from Michael S. Branicky, Jun 24 2021
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
PARI
Python
Python
Formula
Extensions