cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A100022 Number of digits in A090162(n).

Original entry on oeis.org

1, 4, 29, 205, 1412, 9688, 66416, 455237, 3120256
Offset: 1

Views

Author

Eric W. Weisstein, Nov 23 2003 and Wolfdieter Lang, Dec 01 2003

Keywords

Programs

  • Mathematica
    f[n_] := Floor[ Log[10, Binomial[ Fibonacci[2n]Fibonacci[2n + 1], Fibonacci[2n - 1]Fibonacci[2n] - 1]] + 1]; Do[ Print[ f[n]], {n, 9}] (* Robert G. Wilson v, Nov 23 2004 *)

Formula

a(n+1)/a(n) -> Phi^4 = 6.8541... - Robert G. Wilson v, Nov 23 2004

Extensions

a(7)-a(9) from Robert G. Wilson v, Nov 23 2004

A114182 F(4n) - 2n - 1 where F(n) = Fibonacci numbers. Also, the floor of the log base phi of sequence A090162 (phi = (1+Sqrt(5))/2).

Original entry on oeis.org

0, 16, 137, 978, 6754, 46355, 317796, 2178292, 14930333, 102334134, 701408710, 4807526951, 32951280072, 225851433688, 1548008755889, 10610209857690, 72723460248106, 498454011879227, 3416454622906668, 23416728348467644
Offset: 1

Views

Author

Greg Huber, Feb 04 2006

Keywords

Crossrefs

Cf. A033888.

Programs

  • Mathematica
    Table[Fibonacci[4n]-2n-1,{n,20}] (* or *) LinearRecurrence[{9,-16,9,-1},{0,16,137,978},20] (* Harvey P. Dale, May 28 2015 *)

Formula

G.f. x^2*(16-7*x+x^2) / ( (x^2-7*x+1)*(x-1)^2 ). - R. J. Mathar, Oct 19 2012
a(0)=0, a(1)=16, a(2)=137, a(3)=978, a(n)=9*a(n-1)-16*a(n-2)+ 9*a(n-3)- a(n-4). - Harvey P. Dale, May 28 2015

Extensions

Corrected by R. J. Mathar, Oct 19 2012

A114184 Binomial coefficient binomial(F(n+1)*F(n),F(n)*F(n-1)-1), where F(n) = Fibonacci number. A090162 is the bisection (shifted by 1) of this sequence.

Original entry on oeis.org

0, 1, 6, 3003, 23206929840, 61218182743304701891431482520
Offset: 1

Views

Author

Greg Huber, Feb 04 2006

Keywords

Examples

			a(3) = binomial(3*2,2*1-1) = binomial(6,1) = 6.
		

Crossrefs

A003015 Numbers that occur 5 or more times in Pascal's triangle.

Original entry on oeis.org

1, 120, 210, 1540, 3003, 7140, 11628, 24310, 61218182743304701891431482520
Offset: 1

Views

Author

Keywords

Comments

The subject of a recent thread on sci.math. Apparently it has been known for many years that there are infinitely many numbers that occur at least 6 times in Pascal's triangle, namely the solutions to binomial(n,m-1) = binomial(n-1,m) given by n = F_{2k}*F_{2k+1}; m = F_{2k-1}*F_{2k} where F_i is the i-th Fibonacci number. The first of these outside the range of the existing database entry is {104 choose 39} = {103 choose 40} = 61218182743304701891431482520. - Christopher E. Thompson, Mar 09 2001
It may be that there are no terms that appear exactly 5 times in Pascal's triangle, in which case the title could be changed to "Numbers that occur 6 or more times in Pascal's triangle". - N. J. A. Sloane, Nov 24 2004
No other terms below 33*10^16 (David W. Wilson).
61218182743304701891431482520 really is the next term. Weger shows this and I checked it. - T. D. Noe, Nov 15 2004
Blokhuis et al. show that there are no other solutions less than 10^60, nor within the first 10^6 rows of Pascal's triangle other than those given by the parametric solution mentioned above. - Christopher E. Thompson, Jan 19 2018
See the b-file of A090162 for the explicit numbers produced by the parametric formula. - Jeppe Stig Nielsen, Aug 23 2020

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 93, #47.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A182237, A098565 (subsequence).
Cf. A090162 (easy subsequence).

A089508 Solution to a binomial problem together with companion sequence A081016(n-1).

Original entry on oeis.org

1, 14, 103, 713, 4894, 33551, 229969, 1576238, 10803703, 74049689, 507544126, 3478759199, 23843770273, 163427632718, 1120149658759, 7677619978601, 52623190191454, 360684711361583, 2472169789339633, 16944503814015854
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

a(n) and b(n) := A081016(n-1) are the solutions to the Diophantine equation binomial(a,b) = binomial(a+1,b-1). The first few binomials are given by A090162(n).

Examples

			n = 2: a(2) = 14, b(2) = A081016(1) = 6 satisfy binomial(14,6) = 3003 = binomial(15,5). 3003 = A090162(2).
		

References

  • A. I. Shirshov: On the equation binomial(n,m)=binomial(n+1,m-1), pp. 83-86, in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999.

Crossrefs

Equals A081018 - 1.

Programs

  • Magma
    [Fibonacci(2*n)*Fibonacci(2*n+1) - 1: n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Rest[CoefficientList[Series[x*(1 + 6*x - x^2)/((1 - x)*(1 - 7*x + x^2)), {x, 0, 50}], x]] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    x='x+O('x^30); Vec(x*(1 + 6*x - x^2)/((1 - x)*(1 - 7*x + x^2))) \\ G. C. Greubel, Dec 18 2017
    

Formula

G.f.: x*(1+6*x-x^2)/((1-x)*(1-7*x+x^2)).
a(n) = A081018(n) - 1 = F(2*n)*F(2*n+1) - 1, n>=1; with F(n) := A000045(n) (Fibonacci).

A114185 a(n) = Fibonacci(2*n) - n - 1.

Original entry on oeis.org

0, 4, 16, 49, 137, 369, 978, 2574, 6754, 17699, 46355, 121379, 317796, 832024, 2178292, 5702869, 14930333, 39088149, 102334134, 267914274, 701408710, 1836311879, 4807526951, 12586268999, 32951280072, 86267571244, 225851433688, 591286729849, 1548008755889
Offset: 2

Views

Author

Greg Huber, Feb 04 2006

Keywords

Comments

Related to the log base phi of sequence A090162.

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n)-n-1: n in [2..40]]; // Vincenzo Librandi, Sep 03 2017
  • Maple
    g:=(-1+3*z)/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)-n), n=3..20); # Zerinvary Lajos, Mar 22 2009
  • Mathematica
    Rest[Table[Fibonacci[2 n] - n - 1, {n, 30}]] (* Vincenzo Librandi, Sep 03 2017 *)

Extensions

More terms from Vincenzo Librandi, Sep 03 2017
Showing 1-6 of 6 results.