A003020 Largest prime factor of the "repunit" number 11...1 (cf. A002275).
11, 37, 101, 271, 37, 4649, 137, 333667, 9091, 513239, 9901, 265371653, 909091, 2906161, 5882353, 5363222357, 333667, 1111111111111111111, 27961, 10838689, 513239, 11111111111111111111111, 99990001, 182521213001, 1058313049
Offset: 2
References
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 40.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Factors of the Repunits 11 through R_40, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1986, p. 219.
Links
- Max Alekseyev, Table of n, a(n) for n = 2..352 (terms a(2)..a(100) from T. D. Noe, derived from data from Yousuke Koide; a(101)..a(322) from Ray Chandler)
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- Patrick De Geest, Repunits and their Prime Factors
- Makoto Kamada, Factorizations of 11...11 (Repunit).
- Yousuke Koide, Factorizations of Repunit Numbers
- A. A. D. Steward, Factorization of Repunits[up to R(196)] [Broken link]
- S. S. Wagstaff, Jr., The Cunningham Project
Crossrefs
Programs
-
Mathematica
Table[Max[Transpose[FactorInteger[10^i - 1]][[1]]], {i, 2, 25}] Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[-1,1]],{n,2,30}] (* Harvey P. Dale, Feb 01 2014 *)
-
PARI
a(n)=local(p); if(n<2,n==1,p=factor((10^n-1)/9)~[1,]; p[length(p)])
Formula
Extensions
More terms from Harvey P. Dale, Jan 17 2001
Comments