A003025 Number of n-node labeled acyclic digraphs with 1 out-point.
1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1
Keywords
Examples
a(2) = 2: o-->--o (2 ways) a(3) = 15: o-->--o-->--o (6 ways) and o ... o o-->--o .\ . / . \ . / . v v ... v v .. o ..... o (3 ways) (6 ways)
References
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- Marcel et al., Is there a formula for the number of st-dags (DAG with 1 source and 1 sink) with n vertices?, MathOverflow, 2021.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Count[#,{}]==1&&Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,4}] (* _Gus Wiseman, Jan 02 2024 *)
-
PARI
\\ requires A058876. my(T=A058876(20)); vector(#T, n, T[n][1]) \\ Andrew Howroyd, Dec 27 2021
-
PARI
\\ see Marcel et al. link (formula for a'). seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * (2^(n-k)-1)^k * a[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
Formula
a(n) = (-1)^(n-1) * n * A134531(n). - Gus Wiseman, Jan 02 2024
Extensions
More terms from Vladeta Jovovic, Apr 10 2001
Comments