cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003038 Dimensions of split simple Lie algebras over any field of characteristic zero.

Original entry on oeis.org

3, 8, 10, 14, 15, 21, 24, 28, 35, 36, 45, 48, 52, 55, 63, 66, 78, 80, 91, 99, 105, 120, 133, 136, 143, 153, 168, 171, 190, 195, 210, 224, 231, 248, 253, 255, 276, 288, 300, 323, 325, 351, 360, 378, 399, 406, 435, 440, 465, 483, 496, 528, 561, 575, 595, 624, 630
Offset: 1

Views

Author

Keywords

Examples

			The Lie algebras in question and their dimensions are the following:
A_l: l(l+2), l >= 1,
B_l: l(2l+1), l >= 2,
C_l: l(2l+1), l >= 3,
D_l: l(2l-1), l >= 4,
G_2: 14, F_4: 52, E_6: 78, E_7: 133, E_8: 248.
		

References

  • Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652.
  • N. Jacobson, Lie Algebras. Wiley, NY, 1962; pp. 141-146.
  • I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., 13 (1982), 988-1007.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequences, apart from some initial terms: A000217, A000384, A005563, A014105.

Programs

  • Haskell
    import Data.Set (deleteFindMin, fromList, insert)
    a003038 n = a003038_list !! (n-1)
    a003038_list = f (fromList (3 : [14, 52, 78, 133, 248]))
       (drop 2 a005563_list) (drop 4 a000217_list) where
       f s (x:xs) (y:ys) = m : f (x `insert` (y `insert` s')) xs ys where
         (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 16 2012
  • Maple
    M:=4200; M2:=M^2; sa:=[seq(l*(l+2),l=1..M)]; sb:=[seq(l*(2*l+1),l=2..M)]; sd:=[seq(l*(2*l-1),l=4..M)]; se:=[14,52,78,133,248]; s:=convert(sa,set) union convert(sb,set) union convert(sd,set) union convert(se,set); t:=convert(s,list); for i from 1 to nops(t) do if t[i] <= M2 then lprint(i,t[i]); fi; od:
  • Mathematica
    max = 26; sa = Table[ k*(k+2), {k, 1, max}]; sb = Table[ k*(2k+1), {k, 2, max}]; sd:= Table[ k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, sb, sd, se], # <= max^2 &](* Jean-François Alcover, Nov 18 2011, after Maple *)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004