cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003053 Order of orthogonal group O(n, GF(2)).

Original entry on oeis.org

1, 2, 6, 48, 720, 23040, 1451520, 185794560, 47377612800, 24257337753600, 24815256521932800, 50821645356918374400, 208114637736580743168000, 1704875112338069448032256000, 27930968965434591767112450048000, 915241991059360703024740763172864000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections give A003923 and A090770.

Programs

  • Maple
    h:=proc(n) local m;
    if n mod 2 = 0 then m:=n/2;
    2^(m^2)*mul( 4^i-1, i=1..m);
    else m:=(n+1)/2;
    2^(m^2)*mul( 4^i-1, i=1..m-1);
    fi;
    end;
    # This produces a(n+1)
  • Mathematica
    h[n_] := Module[{m}, If[EvenQ[n], m = n/2; 2^(m^2)*Product[4^i-1, {i, 1, m}], m = (n+1)/2; 2^(m^2)*Product[4^i-1, {i, 1, m-1}]]];
    a[n_] := h[n-1];
    Array[a, 16] (* Jean-François Alcover, Aug 18 2022, after Maple code *)
  • PARI
    a(n) = n--; if (n % 2, m = (n+1)/2; 2^(m^2)*prod(k=1, m-1, 4^k-1), m = n/2; 2^(m^2)*prod(k=1, m, 4^k-1)); \\ Michel Marcus, Jul 13 2017
    
  • Python
    def size_binary_orthogonal_group(n):
        k = n-1
        if k%2==0:
            m=k//2
            p=2**(m**2)
            for i in range(1,m+1):
                p*=4**i-1
        else:
            m=(k+1)//2
            p=2**(m**2)
            for i in range(1,m):
                p*=4**i-1
        return p
    #call and print output for a(n)
    print([size_binary_orthogonal_group(n) for n in range(1, 10)])
    # Nathan J. Russell, Nov 01 2017
    
  • Python
    from math import prod
    def A003053(n): return (1 << (n//2)**2)*prod((1 << i)-1 for i in range(2,2*((n-1)//2)+1,2)) # Chai Wah Wu, Jun 20 2022

Formula

For formulas see Maple code.
Asymptotics: a(n) ~ c * 2^((n^2-n)/2), where c = (1/4; 1/4)infinity ~ 0.6885375... is expressed in terms of the Q-Pochhammer symbol. - _Cedric Lorand, Aug 07 2017

Extensions

Edited by N. J. A. Sloane, Dec 30 2008
Edited by W. Edwin Clark et al., Jan 15 2015