cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A071302 a(n) = (1/2) * (number of n X n 0..2 matrices M with MM' mod 3 = I, where M' is the transpose of M and I is the n X n identity matrix).

Original entry on oeis.org

1, 4, 24, 576, 51840, 13063680, 9170703360, 19808719257600, 131569513308979200, 2600339861038664908800, 152915585868239728626892800, 27051378802435080953011843891200, 14395932257291877030764312963579904000
Offset: 1

Views

Author

R. H. Hardin, Jun 11 2002

Keywords

Comments

Also, number of n X n orthogonal matrices over GF(3) with determinant 1. - Max Alekseyev, Nov 06 2022

Examples

			From _Petros Hadjicostas_, Dec 17 2019: (Start)
For n = 2, the 2*a(2) = 8 n X n matrices M with elements in {0, 1, 2} that satisfy MM' mod 3 = I are the following:
(a) With 1 = det(M) mod 3:
[[1,0],[0,1]];  [[0,1],[2,0]]; [[0,2],[1,0]]; [[2,0],[0,2]].
This is the abelian group SO(2, Z_3). See the comments for sequence A060968.
(b) With 2 = det(M) mod 3:
[[0,1],[1,0]];  [[0,2],[2,0]]; [[1,0],[0,2]]; [[2,0],[0,1]].
Note that, for n = 3, we have 2*a(3) = 2*24 = 48 = A264083(3). (End)
		

Crossrefs

Programs

  • Mathematica
    FoldList[Times, 1, LinearRecurrence[{3, -3, 9}, {4, 6, 24}, 12]] (* Amiram Eldar, Jun 22 2025 *)
  • PARI
    { a071302(n) = my(t=n\2); prod(i=0,t-1,3^(2*t)-3^(2*i)) * if(n%2,3^t,1/(3^t+(-1)^t)); } \\ Max Alekseyev, Nov 06 2022

Formula

a(2k+1) = 3^k * Product_{i=0..k-1} (3^(2k) - 3^(2i)); a(2k) = (3^k + (-1)^(k+1)) * Product_{i=1..k-1} (3^(2k) - 3^(2i)) (see MacWilliams, 1969). - Max Alekseyev, Nov 06 2022
a(n+1) = a(n) * A318609(n+1) for n >= 1. - conjectured by Petros Hadjicostas, Dec 18 2019; proved based on the explicit formula by Max Alekseyev, Nov 06 2022

Extensions

Terms a(8) onward from Max Alekseyev, Nov 06 2022

A071305 a(n) = (1/2) * (number of n X n 0..5 matrices M with MM' mod 6 = I, where M' is the transpose of M and I is the n X n identity matrix).

Original entry on oeis.org

1, 8, 144, 27648, 37324800, 300987187200, 13311459341107200, 3680352278629318656000, 6233449457837263300853760000, 63077322283364184001573740871680000, 3794639489522011031097665950031114403840000, 1374795579913014967183977466315375129593674465280000
Offset: 1

Views

Author

R. H. Hardin, Jun 11 2002

Keywords

Examples

			From _Petros Hadjicostas_, Dec 16 2019: (Start)
For n = 2, here are the 2*a(2) = 16 2 X 2 matrices M with elements in {0,1,2,3,4,5} that satisfy MM' mod 6 = I:
[[0,1],[1,0]]; [[0,1],[5,0]]; [[0,5],[1,0]]; [[0,5],[5,0]];
[[1,0],[0,1]]; [[1,0],[0,5]]; [[2,3],[3,2]]; [[2,3],[3,4]];
[[3,2],[2,3]]; [[3,2],[4,3]]; [[3,4],[2,3]]; [[3,4],[4,3]];
[[4,3],[3,2]]; [[4,3],[3,4]]; [[5,0],[0,1]]; [[5,0],[0,5]].
(End)
		

Crossrefs

Formula

a(n) = A003053(n) * A071302(n). - Max Alekseyev, Nov 06 2022

Extensions

Terms a(7) onward from Max Alekseyev, Nov 06 2022

A071308 a(n) = (1/2) * (number of n X n 0..9 matrices with MM' mod 10 = I).

Original entry on oeis.org

1, 8, 720, 691200, 6739200000, 668528640000000, 663347543040000000000, 6622861869711360000000000000, 660754650163765248000000000000000000, 660543208675712843120640000000000000000000000, 6601093143555139842468151296000000000000000000000000000
Offset: 1

Views

Author

R. H. Hardin, Jun 11 2002

Keywords

Crossrefs

Formula

a(n) = A003053(n) * A071304(n). - Max Alekseyev, Nov 06 2022

Extensions

Terms a(6) onward from Max Alekseyev, Nov 06 2022

A071310 a(n) = (1/4) * (number of n X n 0..11 matrices with MM' mod 12 = I).

Original entry on oeis.org

1, 32, 4608, 7077888, 101921587200, 19725496300339200, 49628717475771816345600
Offset: 1

Views

Author

R. H. Hardin, Jun 11 2002

Keywords

Crossrefs

Formula

a(n) = A071302(n) * A071303(n). - Max Alekseyev, Nov 06 2022

Extensions

a(6) from Max Alekseyev, Nov 06 2022
a(7) from Sean A. Irvine, Jul 11 2024

A090770 a(n) = 2^(n^2 + 2n + 1)*Product_{j=1..n} (4^j - 1).

Original entry on oeis.org

2, 48, 23040, 185794560, 24257337753600, 50821645356918374400, 1704875112338069448032256000, 915241991059360703024740763172864000, 7861748876453505095791592854589753555681280000, 1080506416218846625176535970968094253434513802154475520000, 2376056471052200653607636735377527394627947719754523173734842368000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2004

Keywords

Comments

The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4). This is the sequence obtained by (illegally) setting p = 2.

Crossrefs

Cf. A092299 and A092301 (p=3), A092300 and A089989 (p=5), A090768 and A090769 (p=7).
A bisection of A003053, cf. A003923.

Programs

  • Mathematica
    Table[2^(n^2+2n+1) Product[4^j-1,{j,n}],{n,0,10}] (* Harvey P. Dale, May 14 2022 *)
  • Python
    from math import prod
    def A090770(n): return prod((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) ~ c * 2^((n+1)*(2*n+1)), where c = A100221. - Amiram Eldar, Jul 06 2025

A003923 Order of universal Chevalley group B_n (2) or symplectic group Sp(2n,2).

Original entry on oeis.org

1, 6, 720, 1451520, 47377612800, 24815256521932800, 208114637736580743168000, 27930968965434591767112450048000, 59980383884075203672726385914533642240000, 2060902435720151186326095525680721766346957783040000, 1132992015386677099994486205757869431795095310094129168384000000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

A bisection of A003053.

Programs

  • Maple
    for m from 0 to 50 do N:=2^(m^2)*mul( 4^i-1, i=1..m); lprint(N); od:
  • Mathematica
    a[n_] := 2^(n^2)*Times@@(4^Range[n]-1);
    Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Aug 18 2022 *)
  • Python
    from math import prod
    def A003923(n): return (1 << n**2)*prod((1 << i)-1 for i in range(2,2*n+1,2)) # Chai Wah Wu, Jun 20 2022

Formula

a(n) = B(2,n) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015
a(n) ~ c * 2^(n*(2*n+1)), where c = A100221. - Amiram Eldar, Jul 07 2025

Extensions

Edited by N. J. A. Sloane, Dec 30 2008

A088437 Number of n X n orthogonal matrices over GF(2) modulo permutations of rows.

Original entry on oeis.org

1, 1, 1, 2, 6, 32, 288, 4608, 130560, 6684672, 621674496, 106099113984, 33421220904960, 19556188689530880, 21359269286705627136, 43743783499173124374528, 168632285389312394463805440, 1227942828363775231508883701760, 16941927202935006869128068433182720, 444122456468619444070070837134825095168
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 09 2003

Keywords

Comments

Also the number of distinct self-dual bases for GF(2^n) over GF(2). - Max Alekseyev, Feb 11 2008

Crossrefs

Programs

  • PARI
    /* based on http://home.gwu.edu/~maxal/gpscripts/nsdb.gp by Max Alekseyev */
    sd(m,q) =
    /* Number of distinct self-dual bases of GF(q^m) over GF(q) where q is a power of prime */
    {
       if ( q%2 && !(m%2), return(0) );
       return ( (q%2 + 1) * prod(i=1,m-1, q^i - (i+1)%2) / m! );
    }
    vector(66, n, sd(n,2)) /* Joerg Arndt, Jul 03 2011 */

Formula

a(n) = A003053(n) / n!.

Extensions

More terms from Max Alekseyev, Feb 11 2008

A144545 a(n) = 2^(n*(n-1))*(2^n + 1)*Product_{i=1..n-1} (4^i - 1).

Original entry on oeis.org

2, 3, 60, 25920, 197406720, 25015379558400, 51615733565620224000, 1718194449153210615595008000, 918817155086936330770931156779008000, 7877103854727828347931810809383874168094720000, 1081561598265935342583934931877242782978883444539392000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2008

Keywords

Crossrefs

Programs

  • Maple
    g:=m->2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m+1);
  • Mathematica
    a[n_] := 2^(n*(n-1))*(2^n + 1) * Product[4^i - 1, {i, 1, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 07 2025 *)
  • Python
    from math import prod
    def A144545(n): return ((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) ~ c * 2^(2*n^2-n), where c = A100221. - Amiram Eldar, Jul 07 2025

A344674 a(n) is the maximum value such that there is an n X n binary orthogonal matrix with every row having at least a(n) ones.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 3, 7, 5, 9, 5, 11
Offset: 1

Views

Author

Nathan J. Russell, May 26 2021

Keywords

Comments

The inverse of an orthogonal matrix is its transpose. This implies the dot product of a row with itself must be 1. This further implies the number of ones in each row must be odd. Given that orthogonal matrices form a group, it must be the case the transpose is also an orthogonal matrix. This requires every column of a binary orthogonal matrix also have an odd number of ones. As a result, there will always be an orthogonal matrix of size n X n having rows with n-1 number of ones if n is an even number, namely an all-ones matrix except for zeros down the main diagonal. An n X n orthogonal matrix cannot exist with n-1 ones in each row if n is odd, since n-1 is even.
a(n) = n-1 if n is even.
a(n) < n-1 if n is odd.

Examples

			There exist 10 X 10 binary orthogonal matrices such that every row has at least 9 ones, but no 10 X 10 binary orthogonal matrix exists with 10 ones in each row, so a(10) = 9.
There exist 9 X 9 binary orthogonal matrices such that every row has at least 5 ones, but no 9 X 9 binary orthogonal matrix exists with 6 or more ones in each row, so a(9) = 5.
		

Crossrefs

Cf. A003053.

Extensions

a(11)-a(12) from Martin Ehrenstein, Jun 17 2021

A344676 The number of n X n binary orthogonal matrices having an equal number of ones in each row.

Original entry on oeis.org

1, 2, 6, 48, 120, 1440, 5040, 2903040, 203575680, 41157849600, 2414207980800
Offset: 1

Views

Author

Nathan J. Russell, May 26 2021

Keywords

Comments

The inverse of an orthogonal matrix is its transpose. This implies the dot product of a row with itself must be 1. This further implies the number of ones in each row must be odd. Given that orthogonal matrices form a group, it must be the case the transpose is also an orthogonal matrix. This requires every column of a binary orthogonal matrix also have an odd number of ones.
For 1 <= n <= 4 the counts are the same for the total number of binary orthogonal matrices (A003053).

Examples

			a(7) = 5040. There are 5040 7 X 7 binary orthogonal matrices where all rows have an equal number of ones.
		

Crossrefs

Cf. A003053.

Extensions

a(9)-a(10) from Martin Ehrenstein, Jun 13 2021
a(11) from Martin Ehrenstein, Jun 16 2021
Showing 1-10 of 10 results.