A071302 a(n) = (1/2) * (number of n X n 0..2 matrices M with MM' mod 3 = I, where M' is the transpose of M and I is the n X n identity matrix).
1, 4, 24, 576, 51840, 13063680, 9170703360, 19808719257600, 131569513308979200, 2600339861038664908800, 152915585868239728626892800, 27051378802435080953011843891200, 14395932257291877030764312963579904000
Offset: 1
Keywords
Examples
From _Petros Hadjicostas_, Dec 17 2019: (Start) For n = 2, the 2*a(2) = 8 n X n matrices M with elements in {0, 1, 2} that satisfy MM' mod 3 = I are the following: (a) With 1 = det(M) mod 3: [[1,0],[0,1]]; [[0,1],[2,0]]; [[0,2],[1,0]]; [[2,0],[0,2]]. This is the abelian group SO(2, Z_3). See the comments for sequence A060968. (b) With 2 = det(M) mod 3: [[0,1],[1,0]]; [[0,2],[2,0]]; [[1,0],[0,2]]; [[2,0],[0,1]]. Note that, for n = 3, we have 2*a(3) = 2*24 = 48 = A264083(3). (End)
Links
- Jianing Song, Structure of the group SO(2,Z_n).
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv:1404.4214 [math.NT], 2014.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), #14.11.6.
- Jessie MacWilliams, Orthogonal Matrices Over Finite Fields, The American Mathematical Monthly 76:2 (1969), 152-164.
Crossrefs
Programs
-
Mathematica
FoldList[Times, 1, LinearRecurrence[{3, -3, 9}, {4, 6, 24}, 12]] (* Amiram Eldar, Jun 22 2025 *)
-
PARI
{ a071302(n) = my(t=n\2); prod(i=0,t-1,3^(2*t)-3^(2*i)) * if(n%2,3^t,1/(3^t+(-1)^t)); } \\ Max Alekseyev, Nov 06 2022
Formula
a(2k+1) = 3^k * Product_{i=0..k-1} (3^(2k) - 3^(2i)); a(2k) = (3^k + (-1)^(k+1)) * Product_{i=1..k-1} (3^(2k) - 3^(2i)) (see MacWilliams, 1969). - Max Alekseyev, Nov 06 2022
a(n+1) = a(n) * A318609(n+1) for n >= 1. - conjectured by Petros Hadjicostas, Dec 18 2019; proved based on the explicit formula by Max Alekseyev, Nov 06 2022
Extensions
Terms a(8) onward from Max Alekseyev, Nov 06 2022
Comments