A003053 Order of orthogonal group O(n, GF(2)).
1, 2, 6, 48, 720, 23040, 1451520, 185794560, 47377612800, 24257337753600, 24815256521932800, 50821645356918374400, 208114637736580743168000, 1704875112338069448032256000, 27930968965434591767112450048000, 915241991059360703024740763172864000
Offset: 1
References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..41
- J. H. Conway et al., ATLAS of Finite Groups, Chapter 2.
- F. J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly, 76 (1969), 152-164.
Programs
-
Maple
h:=proc(n) local m; if n mod 2 = 0 then m:=n/2; 2^(m^2)*mul( 4^i-1, i=1..m); else m:=(n+1)/2; 2^(m^2)*mul( 4^i-1, i=1..m-1); fi; end; # This produces a(n+1)
-
Mathematica
h[n_] := Module[{m}, If[EvenQ[n], m = n/2; 2^(m^2)*Product[4^i-1, {i, 1, m}], m = (n+1)/2; 2^(m^2)*Product[4^i-1, {i, 1, m-1}]]]; a[n_] := h[n-1]; Array[a, 16] (* Jean-François Alcover, Aug 18 2022, after Maple code *)
-
PARI
a(n) = n--; if (n % 2, m = (n+1)/2; 2^(m^2)*prod(k=1, m-1, 4^k-1), m = n/2; 2^(m^2)*prod(k=1, m, 4^k-1)); \\ Michel Marcus, Jul 13 2017
-
Python
def size_binary_orthogonal_group(n): k = n-1 if k%2==0: m=k//2 p=2**(m**2) for i in range(1,m+1): p*=4**i-1 else: m=(k+1)//2 p=2**(m**2) for i in range(1,m): p*=4**i-1 return p #call and print output for a(n) print([size_binary_orthogonal_group(n) for n in range(1, 10)]) # Nathan J. Russell, Nov 01 2017
-
Python
from math import prod def A003053(n): return (1 << (n//2)**2)*prod((1 << i)-1 for i in range(2,2*((n-1)//2)+1,2)) # Chai Wah Wu, Jun 20 2022
Formula
For formulas see Maple code.
Asymptotics: a(n) ~ c * 2^((n^2-n)/2), where c = (1/4; 1/4)infinity ~ 0.6885375... is expressed in terms of the Q-Pochhammer symbol. - _Cedric Lorand, Aug 07 2017
Extensions
Edited by N. J. A. Sloane, Dec 30 2008
Edited by W. Edwin Clark et al., Jan 15 2015
Comments