cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003053 Order of orthogonal group O(n, GF(2)).

Original entry on oeis.org

1, 2, 6, 48, 720, 23040, 1451520, 185794560, 47377612800, 24257337753600, 24815256521932800, 50821645356918374400, 208114637736580743168000, 1704875112338069448032256000, 27930968965434591767112450048000, 915241991059360703024740763172864000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections give A003923 and A090770.

Programs

  • Maple
    h:=proc(n) local m;
    if n mod 2 = 0 then m:=n/2;
    2^(m^2)*mul( 4^i-1, i=1..m);
    else m:=(n+1)/2;
    2^(m^2)*mul( 4^i-1, i=1..m-1);
    fi;
    end;
    # This produces a(n+1)
  • Mathematica
    h[n_] := Module[{m}, If[EvenQ[n], m = n/2; 2^(m^2)*Product[4^i-1, {i, 1, m}], m = (n+1)/2; 2^(m^2)*Product[4^i-1, {i, 1, m-1}]]];
    a[n_] := h[n-1];
    Array[a, 16] (* Jean-François Alcover, Aug 18 2022, after Maple code *)
  • PARI
    a(n) = n--; if (n % 2, m = (n+1)/2; 2^(m^2)*prod(k=1, m-1, 4^k-1), m = n/2; 2^(m^2)*prod(k=1, m, 4^k-1)); \\ Michel Marcus, Jul 13 2017
    
  • Python
    def size_binary_orthogonal_group(n):
        k = n-1
        if k%2==0:
            m=k//2
            p=2**(m**2)
            for i in range(1,m+1):
                p*=4**i-1
        else:
            m=(k+1)//2
            p=2**(m**2)
            for i in range(1,m):
                p*=4**i-1
        return p
    #call and print output for a(n)
    print([size_binary_orthogonal_group(n) for n in range(1, 10)])
    # Nathan J. Russell, Nov 01 2017
    
  • Python
    from math import prod
    def A003053(n): return (1 << (n//2)**2)*prod((1 << i)-1 for i in range(2,2*((n-1)//2)+1,2)) # Chai Wah Wu, Jun 20 2022

Formula

For formulas see Maple code.
Asymptotics: a(n) ~ c * 2^((n^2-n)/2), where c = (1/4; 1/4)infinity ~ 0.6885375... is expressed in terms of the Q-Pochhammer symbol. - _Cedric Lorand, Aug 07 2017

Extensions

Edited by N. J. A. Sloane, Dec 30 2008
Edited by W. Edwin Clark et al., Jan 15 2015

A090770 a(n) = 2^(n^2 + 2n + 1)*Product_{j=1..n} (4^j - 1).

Original entry on oeis.org

2, 48, 23040, 185794560, 24257337753600, 50821645356918374400, 1704875112338069448032256000, 915241991059360703024740763172864000, 7861748876453505095791592854589753555681280000, 1080506416218846625176535970968094253434513802154475520000, 2376056471052200653607636735377527394627947719754523173734842368000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2004

Keywords

Comments

The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4). This is the sequence obtained by (illegally) setting p = 2.

Crossrefs

Cf. A092299 and A092301 (p=3), A092300 and A089989 (p=5), A090768 and A090769 (p=7).
A bisection of A003053, cf. A003923.

Programs

  • Mathematica
    Table[2^(n^2+2n+1) Product[4^j-1,{j,n}],{n,0,10}] (* Harvey P. Dale, May 14 2022 *)
  • Python
    from math import prod
    def A090770(n): return prod((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) ~ c * 2^((n+1)*(2*n+1)), where c = A100221. - Amiram Eldar, Jul 06 2025

A001308 Order of Chevalley group D_n (2).

Original entry on oeis.org

1, 36, 20160, 174182400, 23499295948800, 50027557148216524800, 1691555775522928280469504000, 911666827031785075278550369566720000, 7846393898179181843651374899795632943267840000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Maple
    for m from 0 to 25 do N:=2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m-1); lprint(N); od:
  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[2, n], {n, 1, 9}] (* Amiram Eldar, Jul 07 2025 *)

Formula

a(n) = 2^(n*(n-1)) * (2^n - 1) * Product_{i=1..n-1} (2^(2*i) - 1).
a(n) ~ c * 2^(n*(2*n-1)), where c = A100221. - Amiram Eldar, Jul 07 2025

A144545 a(n) = 2^(n*(n-1))*(2^n + 1)*Product_{i=1..n-1} (4^i - 1).

Original entry on oeis.org

2, 3, 60, 25920, 197406720, 25015379558400, 51615733565620224000, 1718194449153210615595008000, 918817155086936330770931156779008000, 7877103854727828347931810809383874168094720000, 1081561598265935342583934931877242782978883444539392000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2008

Keywords

Crossrefs

Programs

  • Maple
    g:=m->2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m+1);
  • Mathematica
    a[n_] := 2^(n*(n-1))*(2^n + 1) * Product[4^i - 1, {i, 1, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 07 2025 *)
  • Python
    from math import prod
    def A144545(n): return ((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) ~ c * 2^(2*n^2-n), where c = A100221. - Amiram Eldar, Jul 07 2025

A346848 Number of conjugacy classes of the symplectic group Sp(2n, 2) over the field with 2 elements.

Original entry on oeis.org

1, 3, 11, 30, 81, 198, 477, 1089, 2451, 5358, 11567, 24537, 51577, 107205, 221378, 453900, 926395, 1882152, 3812232, 7699191, 15518112, 31220991, 62733296, 125911851, 252516626, 506082933, 1013780968, 2029989807, 4063678159, 8132877129, 16274093175
Offset: 0

Views

Author

Jan Kristian Haugland, Aug 06 2021

Keywords

Comments

Sp(2n, 2) is isomorphic to the orthogonal group O(2n+1, 2) over the field with 2 elements, and is a simple and complete group for n>=3.

Examples

			a(2)=11, and Sp(4, 2) is isomorphic to the symmetric group S_6 which has 11 conjugacy classes.
		

Crossrefs

Discrete convolution of A070933 and A098613. A003923 gives the order of the group.
Showing 1-5 of 5 results.