cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003084 Related to number of digraphs.

Original entry on oeis.org

1, 5, 40, 801, 46821, 9185102, 6163297995, 14339791643249, 117235455142196308, 3412474003994007703605, 357748249084029269153547905, 136400554886800212073525651823742, 190697966236731843091458826668123014367, 984418987245772021436902193577676975221669509, 18875177868521443706244256784212908480749407027875180
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 124, table 5.1.2, p*a_p
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 12; se = Series[ Sum[ a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; A003084 = Table[ a[n], {n, 1, max}] /. sol[[1]] (* Jean-François Alcover, Feb 01 2012, after formula *)
    terms = 15;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    CoefficientList[Log[Sum[ d[n] x^n, {n, 0, terms + 1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest (* Jean-François Alcover, Aug 29 2019, after Andrew Howroyd in A000273 *)

Formula

Sum a(n) x^n / n = log (1 + Sum d(n) x^n ), where d(n) is # digraphs on n nodes (A000273).

Extensions

Corrected and extended by Vladeta Jovovic, Jan 09 2000
More terms from Jean-François Alcover, Aug 29 2019