cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A003122 Number of Hamiltonian rooted triangulations with n internal nodes and 3 external nodes.

Original entry on oeis.org

1, 3, 18, 136, 1170, 10962, 109158, 1138032, 12298392, 136803060, 1558392462, 18110005704, 214056200904, 2567339253864, 31186302919290, 383088799324192, 4752646170647124, 59485067001886392, 750454803914305388, 9535654298173667520, 121954511767711578480, 1568979034333191541588, 20295073846979967634038
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    functiony[l_] :=
    If[Range[Length[l]].l > Length[l], {}, len = Length[l];
      Select[Permutations[l], #.Range[len] == len &]]
    functionb[s_, m_] := Module[{l = 0},
      If[m + s == 0, 1,
       If[m s == 0, 0,
        If[m >= s,
         If[m > s, 0, 1],
         If[m == 1, CatalanNumber[s]^2,
          If[s - m == 1, 4 m,
           l =
            Flatten[Map[functiony, IntegerPartitions[s + m, {s}] - 1], 1];
            Map[Times @@ # &,
              Map[Map[r, Range[1, s]]^# &,
               l]].(Map[Times @@ # &, Map[Factorial, l]])^(-1)*m!]
          ]
         ]
        ]
       ]
      ]
    a[n_, s_] := Sum[Binomial[n, m] b[s, m], {m, 1, s}]
    b[s_, m_] :=
    If[s + m > 0, table1[[s + 1, m + 1]], If[s + m == 0, 1, 0]]
    f[n_, k_] :=
    k (2 n + 2 k -
          4)! (2 n + k - 1)!/((n + k - 1)! (n + k - 2)! n! (n + k)!) -
      Sum[table2[[s + 1]] a[k + s, n - s], {s, 0, n - 1}]
    r[n_] := (Binomial[2 n, n])^2/(n^2 + 2 n + 1)
    answer[n_] := f[n, 3]
    index = 24;
    table1 = Table[functionb[s, m], {s, 0, index}, {m, 0, index}];
    table2 = Range[index];
    For[i = 2, i <= index, i++, table2[[i]] = f[i - 1, 3]];
    f[index - 1, 3]
    (* Xesda Gonia, Dec 29 2015 *)
  • PARI
    P(n,k) = k*(2*n+2*k-4)!*(2*n+k-1)!/((n+k-1)!*(n+k-2)!*n!*(n+k)!);
    F(K, N=23) = {
      my(x='x + O('x^(K+1)), t='t + O('t^(N+1)),
         r='t*Ser(vector(N, n, sqr(binomial(2*n,n)/(n+1))),'t),
         p=x^3*Ser(apply(k->Ser(vector(N, n, P(n-1,k)),'t), [3..K])),
         s=serreverse(t*(1+r)), f=subst(subst(p, 't, s), 'x, 'x*s/'t));
      Vec(polcoeff(f,K));
    };
    F(3) \\ Gheorghe Coserea, Aug 18 2017

Formula

r(n) = (binomial(2*n, n) / (n + 1))^2.
B(s, m) = sum((m! / m_1! ... m_s!) * r(1)^{m_1} ... r(s)^{m_s}) where the sum is over all partitions of s such that s = m_1 + 2*m_2 + ... + s*m_s and m = m_1 + m_2 + ... + m_s.
A(n, s) = Sum_{m=1..s} binomial(n, m) * B(s, m).
p(n, k) = k * (2*n + 2*k - 4)! * (2*n + k - 1)! / ((n + k - 1)! * (n + k - 2)! * n! * (n + k)!).
f(n, k) = p(n, k) - Sum_{s=0..n-1} f(s, k) * A(k+s, n-s).
a(n) = f(n, 3). - Sean A. Irvine, Feb 02 2015

Extensions

More terms and title clarified by Sean A. Irvine, Feb 02 2015
Three more terms from Xesda Gonia, Dec 29 2015
Showing 1-1 of 1 results.