A003137 Write n in base 3 and juxtapose.
1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 2, 1
Offset: 1
Examples
1, 2, 1,0, 1,1, 1,2, 2,0, 2,1, 2,2, 1,0,0, 1,0,1,.... _R. J. Mathar_, Aug 16 2021
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened
- Eric Weisstein's World of Mathematics, Ternary.
- Wikipedia, Ternary numeral system
Crossrefs
Programs
-
Haskell
a003137 n k = a003137_tabf !! (n-1) !! k a003137_row n = a003137_tabf !! (n-1) a003137_tabf = map reverse $ tail a030341_tabf a003137_list = concat a003137_tabf -- Reinhard Zumkeller, Feb 21 2013
-
Magma
&cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
-
Mathematica
Flatten@ IntegerDigits[ Range@ 40, 3] (* or *) almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ a[#, 3] &, 105] (* Robert G. Wilson v, Jul 01 2014 *)
-
Python
from itertools import count, islice from sympy.ntheory.factor_ import digits def A003137_gen(): return (d for m in count(1) for d in digits(m,3)[1:]) A003137_list = list(islice(A003137_gen(),30)) # Chai Wah Wu, Jan 07 2022
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000
Comments