A003147 Primes p with a Fibonacci primitive root g, i.e., such that g^2 = g + 1 (mod p).
5, 11, 19, 31, 41, 59, 61, 71, 79, 109, 131, 149, 179, 191, 239, 241, 251, 269, 271, 311, 359, 379, 389, 409, 419, 431, 439, 449, 479, 491, 499, 569, 571, 599, 601, 631, 641, 659, 701, 719, 739, 751, 821, 839, 929, 971, 1019, 1039, 1051, 1091, 1129, 1171, 1181, 1201, 1259, 1301
Offset: 1
Examples
3 is a primitive root mod 5, and 3^2 = 3 + 1 mod 5, so 5 is a member. - _Jonathan Sondow_, Feb 17 2013
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Noe)
- Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly, Vol. 58, No. 5 (2020), pp. 25-29.
- Owen J. Brison, Complete Fibonacci sequences in finite fields, Fibonacci Quarterly, Vol. 30, No. 4 (1992), pp. 295-304.
- Alexandru Gica, Quadratic Residues in Fibonacci Sequences, Fibonacci Quart., Vol. 46/47, No. 1 (2008/2009), pp. 68-72. See Theorem 5.1.
- Liang-Chung Hsia, Hua-Chieh Li, and Wei-Liang Sun, Certain Diagonal Equations and Conflict-Avoiding Codes of Prime Lengths, arXiv:2302.00920 [math.NT], 2023.
- H. W. Lenstra, Jr., On Artin's conjecture and Euclid's algorithm in global fields, Invent. Math., Vol. 42 (1977), pp. 202-224; alternative link.
- J. W. Sander, On Fibonacci primitive roots, Fibonacci Quarterly, Vol. 28, No. 1 (1990), pp. 79-80.
- Daniel Shanks, Fibonacci primitive roots, end of article, Fibonacci Quarterly, Vol. 10, No. 2 (1972), pp. 163-168, 181.
- Daniel Shanks and Larry Taylor, An Observation of Fibonacci Primitive Roots, Fibonacci Quarterly, Vol. 11, No. 2 (1973), pp. 159-160.
- Index entries for primes by primitive root.
Programs
-
Maple
filter:=proc(n) local g,r; if not isprime(n) then return false fi; r:= [msolve(g^2 -g - 1, n)][1]; numtheory:-order(rhs(op(r)),n) = n-1 end proc: select(filter, [5,seq(seq(10*i+j,j=[1,9]),i=1..1000)]); # Robert Israel, May 22 2015
-
Mathematica
okQ[p_] := AnyTrue[PrimitiveRootList[p], Mod[#^2, p] == Mod[#+1, p]&]; Select[Prime[Range[300]], okQ] (* Jean-François Alcover, Jan 04 2016 *)
-
PARI
is(n)=if(kronecker(5,n)<1||!isprime(n), return(n==5)); my(s=sqrt(Mod(5,n))); znorder((1+s)/2)==n-1 || znorder((1-s)/2)==n-1 \\ Charles R Greathouse IV, May 22 2015
Extensions
More terms from David W. Wilson
Cross-reference from Charles R Greathouse IV, Nov 05 2009
Definition clarified by M. F. Hasler, Jun 05 2018
Comments