cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003162 A binomial coefficient summation.

Original entry on oeis.org

1, 1, 1, 3, 6, 19, 49, 163, 472, 1626, 5034, 17769, 57474, 206487, 688881, 2508195, 8563020, 31504240, 109492960, 406214878, 1432030036, 5349255726, 19077934506, 71672186953, 258095737156, 974311431094, 3537275250214, 13408623649893
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Mar 26 2023: (Start)
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. Gould (1974) proposed the problem of showing that S(3,n) was always divisible by S(1,n). The present sequence is {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n). For other cases see A361888 ({S(5,n)/S(1,n)}) and A361891 ({S(7,n)/ S(1,n)}).
Conjecture: Let b(n) = a(2*n-1). Then the supercongruence b(n*p^k) == b(n*p^(k-1)) (mod p^(3*k)) holds for positive integers n and k and all primes p >= 5. See A183069. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    H := hypergeom([1/2,1/2],[1],16*x^2);
    ogf := (Int(6*H*(4*x^2+5)/(4-x^2)^(3/2),x)+H*(16*x^2-1)/(4-x^2)^(1/2))*((2-x)/(2+x))^(1/2)/(4*x)+1/(8*x);
    series(ogf,x=0,20);  # Mark van Hoeij, May 06 2013
  • Mathematica
    Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3/Binomial[n, Floor[n/2]],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    a(n)=if(n<0, 0, sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3)/binomial(n,n\2)) /* Michael Somos, Jun 02 2005 */

Formula

G.f.: hypergeometric expression with an antiderivative, see Maple program. - Mark van Hoeij, May 06 2013
Recurrence: 4*n*(n+1)^2*(196*n^3 - 819*n^2 + 530*n + 528)*a(n) = 2*n*(1372*n^4 - 3633*n^3 - 7455*n^2 + 21934*n - 8448)*a(n-1) + (12740*n^6 - 90867*n^5 + 195310*n^4 - 13277*n^3 - 452690*n^2 + 528384*n - 174960)*a(n-2) + 8*(n-2)*(686*n^4 - 3010*n^3 + 1176*n^2 + 6543*n - 4725)*a(n-3) - 16*(n-3)^2*(n-2)*(196*n^3 - 231*n^2 - 520*n + 435)*a(n-4). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 4^(n+2)/(9*Pi*n^2). - Vaclav Kotesovec, Mar 06 2014