A003162 A binomial coefficient summation.
1, 1, 1, 3, 6, 19, 49, 163, 472, 1626, 5034, 17769, 57474, 206487, 688881, 2508195, 8563020, 31504240, 109492960, 406214878, 1432030036, 5349255726, 19077934506, 71672186953, 258095737156, 974311431094, 3537275250214, 13408623649893
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Programs
-
Maple
H := hypergeom([1/2,1/2],[1],16*x^2); ogf := (Int(6*H*(4*x^2+5)/(4-x^2)^(3/2),x)+H*(16*x^2-1)/(4-x^2)^(1/2))*((2-x)/(2+x))^(1/2)/(4*x)+1/(8*x); series(ogf,x=0,20); # Mark van Hoeij, May 06 2013
-
Mathematica
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3/Binomial[n, Floor[n/2]],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
PARI
a(n)=if(n<0, 0, sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3)/binomial(n,n\2)) /* Michael Somos, Jun 02 2005 */
Formula
G.f.: hypergeometric expression with an antiderivative, see Maple program. - Mark van Hoeij, May 06 2013
Recurrence: 4*n*(n+1)^2*(196*n^3 - 819*n^2 + 530*n + 528)*a(n) = 2*n*(1372*n^4 - 3633*n^3 - 7455*n^2 + 21934*n - 8448)*a(n-1) + (12740*n^6 - 90867*n^5 + 195310*n^4 - 13277*n^3 - 452690*n^2 + 528384*n - 174960)*a(n-2) + 8*(n-2)*(686*n^4 - 3010*n^3 + 1176*n^2 + 6543*n - 4725)*a(n-3) - 16*(n-3)^2*(n-2)*(196*n^3 - 231*n^2 - 520*n + 435)*a(n-4). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 4^(n+2)/(9*Pi*n^2). - Vaclav Kotesovec, Mar 06 2014
Comments