A003181 Number of P-equivalence classes of nondegenerate Boolean functions of n variables.
2, 2, 8, 68, 3904, 37329264, 25626412300941056, 67516342973185974302549277749387264, 2871827610052485009904013737758920847602293486924450772201235462734479360
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Aug 05 2019: (Start) Non-isomorphic representatives of the a(0) = 2 through a(2) = 8 sets of subsets: {} {{1}} {{1,2}} {{}} {{},{1}} {{1},{2}} {{},{1,2}} {{2},{1,2}} {{},{1},{2}} {{},{2},{1,2}} {{1},{2},{1,2}} {{},{1},{2},{1,2}} (End)
References
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..12
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971. [Annotated scans of a few pages]
- Index entries for sequences related to Boolean functions
Programs
-
Maple
b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]), h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0, add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))) end: a:= n-> `if`(n=0, 2, b(n$2, [])-b(n-1$2, [])): seq(a(n), n=0..8); # Alois P. Heinz, Aug 14 2019
-
Mathematica
b[n_, i_, l_] := If[n == 0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]], If[i < 1, 0, Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]]; a[n_] := If[n == 0, 2, b[n, n, {}] - b[n - 1, n - 1, {}]]; a /@ Range[0, 8] (* Jean-François Alcover, Apr 11 2020, after Alois P. Heinz *)
Formula
a(n) = 2 * A055621(n). - Gus Wiseman, Aug 05 2019
Extensions
More terms from Christian Sievers, Jul 22 2016
Definition clarified by Ivo Timoteo, Mar 14 2017
Comments