A055621
Number of covers of an unlabeled n-set.
Original entry on oeis.org
1, 1, 4, 34, 1952, 18664632, 12813206150470528, 33758171486592987151274638874693632, 1435913805026242504952006868879460423801146743462225386100617731367239680
Offset: 0
There are 4 nonisomorphic covers of {1,2}, namely {{1},{2}}, {{1,2}}, {{1},{1,2}} and {{1},{2},{1,2}}.
From _Gus Wiseman_, Aug 14 2019: (Start)
Non-isomorphic representatives of the a(3) = 34 covers:
{123} {1}{23} {1}{2}{3} {1}{2}{3}{23}
{13}{23} {1}{3}{23} {1}{2}{13}{23}
{3}{123} {2}{13}{23} {1}{2}{3}{123}
{23}{123} {2}{3}{123} {2}{3}{13}{23}
{3}{13}{23} {1}{3}{23}{123}
{12}{13}{23} {2}{3}{23}{123}
{1}{23}{123} {3}{12}{13}{23}
{3}{23}{123} {2}{13}{23}{123}
{13}{23}{123} {3}{13}{23}{123}
{12}{13}{23}{123}
.
{1}{2}{3}{13}{23} {1}{2}{3}{12}{13}{23} {1}{2}{3}{12}{13}{23}{123}
{1}{2}{3}{23}{123} {1}{2}{3}{13}{23}{123}
{2}{3}{12}{13}{23} {2}{3}{12}{13}{23}{123}
{1}{2}{13}{23}{123}
{2}{3}{13}{23}{123}
{3}{12}{13}{23}{123}
(End)
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 78 (2.3.39)
Unlabeled set-systems are
A000612 (partial sums).
The version with empty edges allowed is
A003181.
-
b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
end:
a:= n-> `if`(n=0, 2, b(n$2, [])-b(n-1$2, []))/2:
seq(a(n), n=0..8); # Alois P. Heinz, Aug 14 2019
-
b[n_, i_, l_] := b[n, i, l] = If[n==0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM@@l]], If[i<1, 0, Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
a[n_] := If[n==0, 2, b[n, n, {}] - b[n-1, n-1, {}]]/2;
a /@ Range[0, 8] (* Jean-François Alcover, Jan 31 2020, after Alois P. Heinz *)
More terms from David Moews (dmoews(AT)xraysgi.ims.uconn.edu) Jul 04 2002
A003180
Number of equivalence classes of Boolean functions of n variables under action of symmetric group.
Original entry on oeis.org
2, 4, 12, 80, 3984, 37333248, 25626412338274304, 67516342973185974328175690087661568, 2871827610052485009904013737758920847669809829897636746529411152822140928
Offset: 0
From _Gus Wiseman_, Aug 05 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(2) = 12 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{1,2}}
{{},{1}}
{{1},{2}}
{{},{1,2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
(End)
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 147.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vladeta Jovovic, Table of n, a(n) for n = 0..11
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Toru Ishihara, Enumeration of hypergraphs, European Journal of Combinatorics, Volume 22, Issue 4, May 2001.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971. [Annotated scans of a few pages]
- Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989. See Table 1, p. 71. - _N. J. A. Sloane_, May 12 2014
- Marko Riedel, Cycle indices for the enumeration of non-isomorphic hypergraphs, Mathematics Stack Exchange, 2018.
- Marko Riedel, Implementation of the Ishihara algorithm for cycle indices of the action of the symmetric group S_n on sets of subsets of an n-set.
- Index entries for sequences related to Boolean functions
-
with(numtheory):with(combinat):
for n from 1 to 10 do
p:=partition(n): s:=0: for k from 1 to nops(p) do q:=convert(p[k],multiset): for i from 0 to n do a(i):=0: od:
for i from 1 to nops(q) do a(q[i][1]):=q[i][2]: od:
c:=1: ord:=1: for i from 1 to n do c:=c*a(i)!*i^a(i):ord:=lcm(ord,i): od: ss:=0:
for i from 1 to ord do if ord mod i=0 then ss:=ss+phi(ord/i)*2^add(gcd(j,i)*a(j),j=1..n): fi: od:
s:=s+2^(ss/ord)/c:
od:
printf(`%d `,n):
printf("%d ",s):
od: # Vladeta Jovovic, Sep 19 2006
-
a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[ 2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}];
a /@ Range[0, 11] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz in A000612 *)
fix[s_] := 2^Sum[Sum[MoebiusMu[i/d] 2^Sum[GCD[j, d] s[j], {j, Keys[s]}], {d, Divisors[i]}]/i, {i, LCM @@ Keys[s]}];
a[0] = 2;
a[n_] := Sum[fix[s]/Product[j^s[j] s[j]!, {j, Keys[s]}], {s, Counts /@ IntegerPartitions[n]}];
Table[a[n], {n, 0, 8}]
(* Andrey Zabolotskiy, Mar 24 2020, after Christian G. Bower's formula; requires Mathematica 10+ *)
A326939
Number of T_0 sets of subsets of {1..n} that cover all n vertices.
Original entry on oeis.org
2, 2, 8, 192, 63384, 4294003272, 18446743983526539408, 340282366920938462946865774750753349904, 115792089237316195423570985008687907841019819456486779364848020385134373080448
Offset: 0
The a(0) = 2 through a(2) = 8 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{1},{1,2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A059201.
The non-covering version is
A326941.
The case closed under intersection is
A326943.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}]
A326943
Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.
Original entry on oeis.org
2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0
The a(0) = 2 through a(3) = 6 sets of subsets:
{} {{1}} {{1},{1,2}}
{{}} {{},{1}} {{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A309615.
The non-covering version is
A326945.
The version not closed under intersection is
A326939.
Cf.
A003180,
A003181,
A003465,
A059052,
A059201,
A245567,
A316978,
A319564,
A319637,
A326940,
A326941,
A326942,
A326947.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326951
Number of unlabeled sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.
Original entry on oeis.org
2, 4, 8, 40, 2464
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 8 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{},{1}}
{{1},{2}}
{{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Unlabeled sets of subsets are
A003180.
Unlabeled T_0 sets of subsets are
A326949.
The case without empty edges is
A326972.
The covering case is
A327011 (first differences).
A326944
Number of T_0 sets of subsets of {1..n} that cover all n vertices, contain {}, and are closed under intersection.
Original entry on oeis.org
1, 1, 4, 58, 3846, 2685550, 151873991914, 28175291154649937052
Offset: 0
The a(0) = 1 through a(2) = 4 sets of subsets:
{{}} {{},{1}} {{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The version not closed under intersection is
A059201.
The version where {} is not necessarily an edge is
A326943.
Cf.
A003181,
A003465,
A055621,
A182507,
A245567,
A316978,
A319564,
A326906,
A326939,
A326941,
A326945,
A326947.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326960
Number of sets of subsets of {1..n} covering all n vertices whose dual is a (strict) antichain, also called covering T_1 sets of subsets.
Original entry on oeis.org
2, 2, 4, 72, 38040, 4020463392, 18438434825136728352, 340282363593610211921722192165556850240, 115792089237316195072053288318104625954343609704705784618785209431974668731584
Offset: 0
The a(0) = 2 through a(2) = 4 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Covering sets of subsets are
A000371.
Covering T_0 sets of subsets are
A326939.
The case without empty edges is
A326961.
The non-covering version is
A326967.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],Length[Union[Select[Intersection@@@Rest[Subsets[#]],Length[#]==1&]]]==n&]],{n,0,3}]
A326949
Number of unlabeled T_0 sets of subsets of {1..n}.
Original entry on oeis.org
2, 4, 10, 68, 3838, 37320356
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 10 sets of sets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{},{1}}
{{1},{2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The covering case is
A326942 (first differences).
The case without empty edges is
A326946.
Cf.
A000371,
A000612,
A003181,
A059052,
A245567,
A316978,
A319559,
A319564,
A319637,
A326939,
A326940.
A326942
Number of unlabeled T_0 sets of subsets of {1..n} that cover all n vertices.
Original entry on oeis.org
2, 2, 6, 58, 3770
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 6 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A319637.
The non-covering version is
A326949 (partial sums).
Cf.
A000371,
A003180,
A055621,
A059201,
A316978,
A319559,
A319564,
A326907,
A326941,
A326943,
A326946.
A112535
Number of truth tables generated by 3CNF expressions of n variables.
Original entry on oeis.org
2, 4, 16, 256, 43146, 120510132, 4977694100656
Offset: 0
C. Bradford Barber (bradb(AT)shore.net), Dec 13 2005
- Knuth, Donald E., Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 148 and 220, Problem 191.
Showing 1-10 of 11 results.
Comments