cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001146 a(n) = 2^(2^n).

Original entry on oeis.org

2, 4, 16, 256, 65536, 4294967296, 18446744073709551616, 340282366920938463463374607431768211456, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 0

Views

Author

Keywords

Comments

Or, write previous term in base 2, read in base 4.
a(1) = 2, a(n) = smallest power of 2 which does not divide the product of all previous terms.
Number of truth tables generated by Boolean expressions of n variables. - C. Bradford Barber (bradb(AT)shore.net), Dec 27 2005
From Ross Drewe, Feb 13 2008: (Start)
Or, number of distinct n-ary operators in a binary logic. The total number of n-ary operators in a k-valued logic is T = k^(k^n), i.e., if S is a set of k elements, there are T ways of mapping an ordered subset of n elements from S to an element of S. Some operators are "degenerate": the operator has arity p, if only p of the n input values influence the output. Therefore the set of operators can be partitioned into n+1 disjoint subsets representing arities from 0 to n.
For n = 2, k = 2 gives the familiar Boolean operators or functions, C = F(A,B). There are 2^2^2 = 16 operators, composed of: arity 0: 2 operators (C = 0 or 1), arity 1: 4 operators (C = A, B, not(A), not(B)), arity 2: 10 operators (including well-known pairs AND/NAND, OR/NOR, XOR/EQ). (End)
From José María Grau Ribas, Jan 19 2012: (Start)
Or, numbers that can be formed using the number 2, the power operator (^), and parenthesis. (End) [The paper by Guy and Selfridge (see also A003018) shows that this is the same as the current sequence. - N. J. A. Sloane, Jan 21 2012]
a(n) is the highest value k such that A173419(k) = n+1. - Charles R Greathouse IV, Oct 03 2012
Let b(0) = 8 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n) = a(n) for n > 0. - Derek Orr, Jan 15 2015
Twice the number of distinct minimal toss sequences of a coin to obtain all sequences of length n, which is 2^(2^n-1). This derives from the 2^n ways to cut each of the de Bruijn sequences B(2,n). - Maurizio De Leo, Feb 28 2015
I conjecture that { a(n) ; n>1 } are the numbers such that n^4-1 divides 2^n-1, intersection of A247219 and A247165. - M. F. Hasler, Jul 25 2015
Erdős has shown that it is an irrationality sequence (see Guy reference). - Stefano Spezia, Oct 13 2024

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n+1) = (a(n))^2.
1 = Sum_{n>=0} a(n)/A051179(n+1) = 2/3 + 4/15 + 16/255 + 256/65535, ..., with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
a(n) = A000079(A000079(n)). - Robert Israel, Jan 15 2015
Sum_{n>=0} 1/a(n) = A007404. - Amiram Eldar, Oct 14 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = 2.
Product_{n>=0} (1 - 1/a(n)) = A215016. (End)

A109457 Number of Krom functions on n variables (or 2SAT instances): conjunctions of clauses with two literals per clause.

Original entry on oeis.org

2, 4, 16, 166, 4170, 224716, 24445368, 5167757614, 2061662323954
Offset: 0

Views

Author

Don Knuth, Aug 24 2005

Keywords

Comments

A Krom function is equivalent to a Boolean function with the property that, if f(x)=f(y)=f(z)=1, then f()=1, where denotes the bitwise median of the three Boolean vectors x, y, z.
Also related to number of retracts of an n-cube (see Feder).

References

  • Tomas Feder, Stable Networks and Product Graphs, Memoirs of the American Mathematical Society, 555 (1995), Section 3.2.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • Knuth, Donald E., Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 148 and 220, Problem 191.
  • M. R. Krom, The decision problem for a class of first-order formulas in which all disjunctions are binary, Zeitschrift f. mathematische Logik und Grundlagen der Mathematik, 13 (1967), 15-20.
  • Thomas J. Schaefer, The complexity of satisfiability problems, ACM Symposium on Theory of Computing, 10 (1978), 216-226.

Crossrefs

A112533 Expansion of (4+49*x+108*x^2-432*x^3+54675*x^5)/((1-27*x^2)*(1-6*x+27*x^2)*(1+6*x+27*x^2)).

Original entry on oeis.org

4, 49, 144, 9, 324, 42849, 46656, 1347921, 3175524, 1896129, 23619600, 532917225, 359254116, 30866624721, 59997563136, 185622243921, 917583904836, 4659420127761, 750046066704, 604376350260489, 964709560931076
Offset: 0

Views

Author

Creighton Dement, Sep 11 2005

Keywords

Comments

A floretion-generated sequence of squares.

Crossrefs

Programs

  • Magma
    I:=[4,49,144,9,324,42849]; [n le 6 select I[n] else 9*(Self(n-2) - 27*Self(n-4) +2187*Self(n-6)): n in [1..31]]; // G. C. Greubel, Jan 12 2022
    
  • Mathematica
    a[n_]:= With[{p=Sqrt[27]}, Simplify[(p^n/12)*(9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU[n, 3/p] -(153-261*(-1)^n)/p*ChebyshevU[n-1, 3/p] )]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
  • PARI
    Vec((4 + 49*x + 108*x^2 - 432*x^3 + 54675*x^5) / ((1 - 6*x + 27*x^2)*(1 - 27*x^2)*(1 + 6*x + 27*x^2)) + O(x^20)) \\ Colin Barker, May 06 2019
    
  • Sage
    U=chebyshev_U
    p=sqrt(27)
    def A112533(n): return (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*U(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*U(n-1, 3/p) )
    [A112533(n) for n in (0..30)] # G. C. Greubel, Jan 12 2022

Formula

a(n) = 9*a(n-2) - 243*a(n-4) + 19683*a(n-6) for n>5. - Colin Barker, May 06 2019
a(n) = (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*ChebyshevU(n-1, 3/p) ), where p = sqrt(27). - G. C. Greubel, Jan 12 2022

A112650 Number of truth tables generated by (n-1)-CNF Boolean expressions of n variables.

Original entry on oeis.org

10, 166, 43146, 2805252934
Offset: 2

Views

Author

Brad Barber (bradb(AT)shore.net), Dec 27 2005

Keywords

Comments

Conjunctive Normal Form (CNF) is a conjunction of disjunctions. k-CNF limits each disjunctive clause to k variables and their complements.

Examples

			The 1-CNF expressions of 2 variables are a, -a, b, -b, a and b, a and -b, -a and b, -a and -b, a and -a, true. Their truth tables are 0xC, 0x3, 0xA, 0x5, 0x8, 0x4, 0x2, 0x1, 0x0, 0xF.
		

Crossrefs

Showing 1-4 of 4 results.