A364837 Initial digit of 2^(2^n) = A001146(n).
2, 4, 1, 2, 6, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 2, 4, 1, 2, 6, 4, 2, 4, 1, 3, 1, 1, 1, 2, 4, 1, 3, 9, 9, 8, 7, 5, 2, 8, 8, 6, 4, 1, 3, 9, 9, 9, 9, 9, 8, 7, 5, 2, 8, 7, 6, 3, 1, 2, 5, 3, 1, 1, 1, 3, 1, 1, 3, 9, 8, 7, 5, 3, 1, 1, 1, 3, 1, 2, 4, 2, 5, 2, 6, 4, 1, 2
Offset: 0
Examples
a(5) = 4, since 2^(2^5) = 2^32 = 4294967296.
Links
- Pointless Large numbers stuff by Cookiefonster, 2.03 The Weak Hyper-Operators.
Programs
-
Mathematica
Join[{2},Table[Floor[2^(2^n)/10^Floor[Log10[2^(2^n)]]],{n,27}]] (* Stefano Spezia, Aug 10 2023 *)
-
Python
def A364837(n): return int(str(1<<(1<
Chai Wah Wu, Sep 14 2023
Extensions
More terms from Jinyuan Wang, Aug 10 2023
Comments