A059201
Number of T_0-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0
The version with empty edges allowed is
A326939.
The non-covering version is
A326940.
BII-numbers of T_0 set-systems are
A326947.
The same with connected instead of covering is
A326948.
-
Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)
A001035
Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs).
Original entry on oeis.org
1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023
Offset: 0
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of T_0 topologies with n points. For example, the a(0) = 1 through a(3) = 19 topologies are:
{} {}{1} {}{1}{12} {}{1}{12}{123}
{}{2}{12} {}{1}{13}{123}
{}{1}{2}{12} {}{2}{12}{123}
{}{2}{23}{123}
{}{3}{13}{123}
{}{3}{23}{123}
{}{1}{2}{12}{123}
{}{1}{3}{13}{123}
{}{2}{3}{23}{123}
{}{1}{12}{13}{123}
{}{2}{12}{23}{123}
{}{3}{13}{23}{123}
{}{1}{2}{12}{13}{123}
{}{1}{2}{12}{23}{123}
{}{1}{3}{12}{13}{123}
{}{1}{3}{13}{23}{123}
{}{2}{3}{12}{23}{123}
{}{2}{3}{13}{23}{123}
{}{1}{2}{3}{12}{13}{23}{123}
(End)
- G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1961, p. 4.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 427.
- K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K. H. Butler and G. Markowsky. "The number of partially ordered sets. I." Journal of Korean Mathematical Society 11.1 (1974).
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 60, 229.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf endlichen Mengen, PhD dissertation, Westfälische Wilhelms-Universität zu Münster, 1972.
- M. Erné and K. Stege, The number of labeled orders on fifteen elements, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. 2, Problem 5.39, p. 88.
- Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
- Juliana Bowles and Marco B. Caminati, A Verified Algorithm Enumerating Event Structures, arXiv:1705.07228 [cs.LO], 2017.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179.
- J. I. Brown and S. Watson, The number of complements of a topology on n points is at least 2^n (except for some special cases), Discr. Math., 154 (1996), 27-39.
- K. K.-H. Butler, The number of partially ordered sets, Journal of Combinatorial Theory, Series B 13.3 (1972): 276-289.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- K. K.-H. Butler and G. Markowsky, The number of partially ordered sets. II., J. Korean Math. Soc 11 (1974): 7-17.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966. [Annotated scanned copy]
- Narendrakumar R. Dasre and Pritam Gujarathi, Approximating the Bounds for Number of Partially Ordered Sets with n Labeled Elements, Computing in Engineering and Technology, Advances in Intelligent Systems and Computing, Vol. 1025, Springer (Singapore 2019), 349-356.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, The number of partially ordered (labeled) sets, Preprint, 1989. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313. [Annotated scanned copy]
- S. R. Finch, Transitive relations, topologies and partial orders.
- S. R. Finch, Transitive relations, topologies and partialorders, June 5, 2003. [Cached copy, with permission of the author]
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Didier Garcia, Proof of a(19) formula [in French].
- Didier Garcia, Two conjectures concerning a(n) [in French].
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- G. Grekos, Letter to N. J. A. Sloane, Oct 31 1994, with attachments.
- J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
- Richard Kenyon, Maxim Kontsevich, Oleg Ogievetsky, Cosmin Pohoata, Will Sawin, and Senya Shlosman, The miracle of integer eigenvalues, arXiv:2401.05291 [math.CO], 2024. See p. 4.
- Dongseok Kim, Young Soo Kwon, and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550 [math.CO], 2012. - From _N. J. A. Sloane_, Nov 09 2012
- M. Y. Kizmaz, On The Number Of Topologies On A Finite Set, arXiv preprint arXiv:1503.08359 [math.NT], 2015.
- D. J. Kleitman and B. L. Rothschild, Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc., 205 (1975) 205-220.
- G. Kreweras, Dénombrement des ordres étagés, Discrete Math., 53 (1985), 147-149.
- Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers.
- Sami Lazaar, Houssem Sabri, and Randa Tahri, Structural and Numerical Studies of Some Topological Properties for Alexandroff Spaces, Bull. Iran. Math. Soc. (2021).
- N. Lygeros and P. Zimmermann, Computation of P(14), the number of posets with 14 elements: 1.338.193.159.771.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Bob Proctor, Chapel Hill Poset Atlas.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971.
- D. Rusin, Further information and references. [Broken link]
- D. Rusin, Further information and references. [Cached copy]
- A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972.
- N. J. A. Sloane, Classic Sequences.
- Gus Wiseman, Hasse diagrams of the a(4) = 219 posets.
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970. [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences.
- Index entries for sequences related to posets
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&UnsameQ@@dual[#]&&SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
a(15)-a(16) from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A000112
Number of partially ordered sets ("posets") with n unlabeled elements.
Original entry on oeis.org
1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156, 4483130665195087
Offset: 0
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are:
{}{1}{12}{123}{1234}
{}{1}{2}{12}{123}{1234}
{}{1}{12}{13}{123}{1234}
{}{1}{12}{123}{124}{1234}
{}{1}{2}{12}{13}{123}{1234}
{}{1}{2}{12}{123}{124}{1234}
{}{1}{12}{13}{123}{124}{1234}
{}{1}{2}{12}{13}{123}{124}{1234}
{}{1}{2}{12}{13}{123}{134}{1234}
{}{1}{2}{3}{12}{13}{23}{123}{1234}
{}{1}{2}{12}{13}{24}{123}{124}{1234}
{}{1}{12}{13}{14}{123}{124}{134}{1234}
{}{1}{2}{3}{12}{13}{23}{123}{124}{1234}
{}{1}{2}{12}{13}{14}{123}{124}{134}{1234}
{}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234}
{}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234}
(End)
- G. Birkhoff, Lattice Theory, 1961, p. 4.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
- E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
- J. L. Davison, Asymptotic enumeration of partial orders. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 53 (1986), 277--286. MR0885256 (88c:06001)
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. I, 2nd. ed., Chap. 3, pp. 241ff; Vol. 2, Problem 5.39, p. 88.
- For further references concerning the enumeration of topologies and posets see under A001035.
- David Wasserman, Table of n, a(n) for n = 0..16
- R. Bayon, N. Lygeros, and J.-S. Sereni, New progress in enumeration of mixed models, Applied Mathematics E-Notes, 5 (2005), 60-65.
- R. Bayon, N. Lygeros, and J.-S. Sereni, Nouveaux progrès dans l'énumération des modèles mixtes, in Knowledge discovery and discrete mathematics: JIM'2003, INRIA, Université de Metz, France, 2003, pp. 243-246.
- Gunnar Brinkmann and Brendan D. McKay, Counting unlabeled topologies and transitive relations.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points [On Brendan McKay's home page]
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179.
- Kim Ki-Hang Butler, The number of partially ordered sets, Journal of Combinatorial Theory, Series B 13.3 (1972): 276-289.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- Kim Ki-Hang Butler and Gaoacs Markowsky. The number of partially ordered sets. II., J. Korean Math. Soc 11 (1974): 7-17.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- C. Chaunier, Letter to N. J. A. Sloane, Jun 22 1993, with several attachments
- C. Chaunier and N. Lygeros, The Number of Orders with Thirteen Elements, Order 9:3 (1992) 203-204. [See Chaunier letter]
- C. Chaunier and N. Lygeros, Le nombre de posets à isomorphie près ayant 12 éléments Theoretical Computer Science, 123 p. 89-94, 1994.
- C. Chaunier and N. Lygeros, Progrès dans l'énumération des posets, C. R. Acad. Sci. Paris 314 série I (1992) 691-694. [See Chaunier letter]
- E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date [Annotated scanned copy]
- Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices, arXiv:2309.13783 [math.CO], 2023. See p. 14. See also CUBO, A Mathematical Journal, Vol. 26, no. 2, pp. 217-237, August 2024.
- M. Erné and K. Stege, The number of partially ordered (labeled) sets, Preprint, 1989. (Annotated scanned copy)
- Uli Fahrenberg, Christian Johansen, Georg Struth, and Ratan Bahadur Thapa, Generating Posets Beyond N, arXiv:1910.06162 [cs.FL], 2019.
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- FindStat - Combinatorial Statistic Finder, Posets
- R. Fraisse and N. Lygeros, Petits posets: dénombrement, représentabilité par cercles et compenseurs C. R. Acad. Sci. Paris, 313, I, 417-420, 1991.
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961. [Annotated scanned copy]
- G. Grekos, Letter to N. J. A. Sloane, Oct 31 1994, with attachments
- M. Guay-Paquet, A modular relation for the chromatic symmetric functions of (3+1)-free posets, arXiv preprint arXiv:1306.2400 [math.CO], 2013.
- Ann Marie Hess, Mixed Models Site
- C. Joslyn, E. Hogan, and A. Pogel, Conjugacy and Iteration of Standard Interval Rank in Finite Ordered Sets, arXiv preprint arXiv:1409.6684 [math.CO], 2014.
- Dongseok Kim, Young Soo Kwon, and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550 [math.CO], 2012.
- D. J. Kleitman and B. L. Rothschild, Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc., 205 (1975) 205-220.
- N. Lygeros, Calculs exhaustifs sur les posets d'au plus 7 éléments, SINGULARITE, vol. 2 n4 p. 10-24, avril 1991.
- N. Lygeros and P. Zimmermann, Computation of P(14), the number of posets with 14 elements: 1.338.193.159.771
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Bob Proctor, Chapel Hill Poset Atlas
- D. Rusin, Further information and references [Broken link]
- D. Rusin, Further information and references [Cached copy]
- Henry Sharp, Jr., Quasi-orderings and topologies on finite sets, Proceedings of the American Mathematical Society 17.6 (1966): 1344-1349. [Annotated scanned copy]
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- N. J. A. Sloane, Classic Sequences
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Szilárd Szalay, The classification of multipartite quantum correlation, arXiv:1806.04392 [quant-ph], 2018.
- N. L. White, Two letters to N. J. A. Sloane, 1970, with hand-drawn enclosure
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Two related abstracts, 1970 and 1972 [Annotated scanned copies]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Stav Zalel, Covariant Growth Dynamics, arXiv:2302.10582 [gr-qc], 2023.
- Index entries for sequences related to posets
- Index entries for "core" sequences
a(15)-a(16) are from Brinkmann's and McKay's paper. -
Vladeta Jovovic, Jan 04 2006
A326947
BII-numbers of T_0 set-systems.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 70, 71, 73, 74, 75, 77, 78
Offset: 1
The sequence of all T_0 set-systems together with their BII numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
15: {{1},{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
T_0 set-systems are counted by
A326940, with unlabeled version
A326946.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
TZQ[sys_]:=UnsameQ@@dual[sys];
Select[Range[0,100],TZQ[bpe/@bpe[#]]&]
-
from itertools import count, chain, islice
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def a_gen():
for n in count(0):
a,b,s = [bin_i(k) for k in bin_i(n)],[],set()
for i in {i for i in chain.from_iterable(a)}:
b.append([])
for j in range(len(a)):
if i in a[j]:
b[-1].append(j)
s.add(tuple(b[-1]))
if len(s) == len(b):
yield n
A326947_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jul 25 2024
A326940
Number of T_0 set-systems on n vertices.
Original entry on oeis.org
1, 2, 7, 112, 32105, 2147161102, 9223372004645756887, 170141183460469231537996491362807709908, 57896044618658097711785492504343953921871039195927143534469727707459805807105
Offset: 0
The a(0) = 1 through a(2) = 7 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The non-T_0 version is
A058891 shifted to the left.
The version with empty edges is
A326941.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]],{n,0,3}]
A326941
Number of T_0 sets of subsets of {1..n}.
Original entry on oeis.org
2, 4, 14, 224, 64210, 4294322204, 18446744009291513774, 340282366920938463075992982725615419816, 115792089237316195423570985008687907843742078391854287068939455414919611614210
Offset: 0
The a(0) = 2 through a(2) = 14 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{},{1}}
{{},{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A326940.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],UnsameQ@@dual[#]&]],{n,0,3}]
A245567
Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other.
Original entry on oeis.org
2, 1, 1, 5, 76, 5993, 7689745, 2414465044600, 56130437141763247212112, 286386577668298408602599478477358234902247
Offset: 0
For n = 0, a(0) = 2 by the antisets {}, {{}}.
For n = 1, a(1) = 1 by the antiset {{1}}.
For n = 2, a(2) = 1 by the antiset {{1},{2}}.
For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
Cf.
A000372 (Dedekind numbers),
A006126 (Number of antichain covers of a labeled n-set).
Sequences counting and ranking T_0 structures:
A309615 (covering set-systems closed under intersection),
A319559 (unlabeled set-systems by weight),
A319637 (unlabeled covering set-systems),
A326939 (covering sets of subsets),
A326943 (covering sets of subsets closed under intersection),
A326944 (covering sets of subsets with {} and closed under intersection),
A326945 (sets of subsets closed under intersection),
A326947 (BII-numbers of set-systems),
A326949 (unlabeled sets of subsets),
A326959 (set-systems closed under intersection),
A327013 (unlabeled covering set-systems closed under intersection),
A327016 (BII-numbers of topologies).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
A326943
Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.
Original entry on oeis.org
2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0
The a(0) = 2 through a(3) = 6 sets of subsets:
{} {{1}} {{1},{1,2}}
{{}} {{},{1}} {{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A309615.
The non-covering version is
A326945.
The version not closed under intersection is
A326939.
Cf.
A003180,
A003181,
A003465,
A059052,
A059201,
A245567,
A316978,
A319564,
A319637,
A326940,
A326941,
A326942,
A326947.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326944
Number of T_0 sets of subsets of {1..n} that cover all n vertices, contain {}, and are closed under intersection.
Original entry on oeis.org
1, 1, 4, 58, 3846, 2685550, 151873991914, 28175291154649937052
Offset: 0
The a(0) = 1 through a(2) = 4 sets of subsets:
{{}} {{},{1}} {{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The version not closed under intersection is
A059201.
The version where {} is not necessarily an edge is
A326943.
Cf.
A003181,
A003465,
A055621,
A182507,
A245567,
A316978,
A319564,
A326906,
A326939,
A326941,
A326945,
A326947.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326960
Number of sets of subsets of {1..n} covering all n vertices whose dual is a (strict) antichain, also called covering T_1 sets of subsets.
Original entry on oeis.org
2, 2, 4, 72, 38040, 4020463392, 18438434825136728352, 340282363593610211921722192165556850240, 115792089237316195072053288318104625954343609704705784618785209431974668731584
Offset: 0
The a(0) = 2 through a(2) = 4 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Covering sets of subsets are
A000371.
Covering T_0 sets of subsets are
A326939.
The case without empty edges is
A326961.
The non-covering version is
A326967.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],Length[Union[Select[Intersection@@@Rest[Subsets[#]],Length[#]==1&]]]==n&]],{n,0,3}]
Showing 1-10 of 15 results.
Comments