A059201
Number of T_0-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0
The version with empty edges allowed is
A326939.
The non-covering version is
A326940.
BII-numbers of T_0 set-systems are
A326947.
The same with connected instead of covering is
A326948.
-
Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)
A326947
BII-numbers of T_0 set-systems.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 70, 71, 73, 74, 75, 77, 78
Offset: 1
The sequence of all T_0 set-systems together with their BII numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
15: {{1},{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
T_0 set-systems are counted by
A326940, with unlabeled version
A326946.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
TZQ[sys_]:=UnsameQ@@dual[sys];
Select[Range[0,100],TZQ[bpe/@bpe[#]]&]
-
from itertools import count, chain, islice
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def a_gen():
for n in count(0):
a,b,s = [bin_i(k) for k in bin_i(n)],[],set()
for i in {i for i in chain.from_iterable(a)}:
b.append([])
for j in range(len(a)):
if i in a[j]:
b[-1].append(j)
s.add(tuple(b[-1]))
if len(s) == len(b):
yield n
A326947_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jul 25 2024
A326940
Number of T_0 set-systems on n vertices.
Original entry on oeis.org
1, 2, 7, 112, 32105, 2147161102, 9223372004645756887, 170141183460469231537996491362807709908, 57896044618658097711785492504343953921871039195927143534469727707459805807105
Offset: 0
The a(0) = 1 through a(2) = 7 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The non-T_0 version is
A058891 shifted to the left.
The version with empty edges is
A326941.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]],{n,0,3}]
A326939
Number of T_0 sets of subsets of {1..n} that cover all n vertices.
Original entry on oeis.org
2, 2, 8, 192, 63384, 4294003272, 18446743983526539408, 340282366920938462946865774750753349904, 115792089237316195423570985008687907841019819456486779364848020385134373080448
Offset: 0
The a(0) = 2 through a(2) = 8 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{1},{1,2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A059201.
The non-covering version is
A326941.
The case closed under intersection is
A326943.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}]
A245567
Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other.
Original entry on oeis.org
2, 1, 1, 5, 76, 5993, 7689745, 2414465044600, 56130437141763247212112, 286386577668298408602599478477358234902247
Offset: 0
For n = 0, a(0) = 2 by the antisets {}, {{}}.
For n = 1, a(1) = 1 by the antiset {{1}}.
For n = 2, a(2) = 1 by the antiset {{1},{2}}.
For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
Cf.
A000372 (Dedekind numbers),
A006126 (Number of antichain covers of a labeled n-set).
Sequences counting and ranking T_0 structures:
A309615 (covering set-systems closed under intersection),
A319559 (unlabeled set-systems by weight),
A319637 (unlabeled covering set-systems),
A326939 (covering sets of subsets),
A326943 (covering sets of subsets closed under intersection),
A326944 (covering sets of subsets with {} and closed under intersection),
A326945 (sets of subsets closed under intersection),
A326947 (BII-numbers of set-systems),
A326949 (unlabeled sets of subsets),
A326959 (set-systems closed under intersection),
A327013 (unlabeled covering set-systems closed under intersection),
A327016 (BII-numbers of topologies).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
A326943
Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.
Original entry on oeis.org
2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0
The a(0) = 2 through a(3) = 6 sets of subsets:
{} {{1}} {{1},{1,2}}
{{}} {{},{1}} {{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A309615.
The non-covering version is
A326945.
The version not closed under intersection is
A326939.
Cf.
A003180,
A003181,
A003465,
A059052,
A059201,
A245567,
A316978,
A319564,
A319637,
A326940,
A326941,
A326942,
A326947.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326944
Number of T_0 sets of subsets of {1..n} that cover all n vertices, contain {}, and are closed under intersection.
Original entry on oeis.org
1, 1, 4, 58, 3846, 2685550, 151873991914, 28175291154649937052
Offset: 0
The a(0) = 1 through a(2) = 4 sets of subsets:
{{}} {{},{1}} {{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The version not closed under intersection is
A059201.
The version where {} is not necessarily an edge is
A326943.
Cf.
A003181,
A003465,
A055621,
A182507,
A245567,
A316978,
A319564,
A326906,
A326939,
A326941,
A326945,
A326947.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326945
Number of T_0 sets of subsets of {1..n} that are closed under intersection.
Original entry on oeis.org
2, 4, 12, 96, 4404, 2725942, 151906396568, 28175293281055562650
Offset: 0
The a(0) = 2 through a(2) = 12 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{},{1}}
{{},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The version not closed under intersection is
A326941.
The case without empty edges is
A326959.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326969
Number of sets of subsets of {1..n} whose dual is a weak antichain.
Original entry on oeis.org
2, 4, 12, 112, 38892
Offset: 0
The a(0) = 2 through a(2) = 12 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{1,2}}
{{},{1}}
{{},{2}}
{{1},{2}}
{{},{1,2}}
{{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Sets of subsets whose dual is strict are
A326941.
The BII-numbers of set-systems whose dual is a weak antichain are
A326966.
Sets of subsets whose dual is a (strict) antichain are
A326967.
The case without empty edges is
A326968.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n]]],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A326949
Number of unlabeled T_0 sets of subsets of {1..n}.
Original entry on oeis.org
2, 4, 10, 68, 3838, 37320356
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 10 sets of sets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{},{1}}
{{1},{2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The covering case is
A326942 (first differences).
The case without empty edges is
A326946.
Cf.
A000371,
A000612,
A003181,
A059052,
A245567,
A316978,
A319559,
A319564,
A319637,
A326939,
A326940.
Showing 1-10 of 14 results.
Comments