A003192 Length of uncrossed knight's path on an n X n board.
0, 0, 2, 5, 10, 17, 24, 35, 47
Offset: 1
Examples
Lengths of longest uncrossed knight's paths on all sufficiently small rectangular boards m X n, with 3 <= m <= n: ......2...4...5...6...8...9..10 ..........5...7...9..11..13..15 .............10..14..16..19..22 .................17..21..25..29 .....................24..30..35 .........................35..42 .............................47
References
- D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, CSLI, Stanford, CA, 2010. (CSLI Lecture Notes, vol. 192)
- J. S. Madachy, Letter to N. J. A. Sloane, Apr 26 1975.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Various authors, Uncrossed knight's tours, J. Rec. Math., 2 (1969), 154-157.
- L. D. Yarbrough, Uncrossed knight's tours, J. Rec. Math., 1 (No. 3, 1969), 140-142.
Links
- Alex Chernov, Uncrossed Knight's Tours.
- George Jelliss, Non-Intersecting Paths.
- J. S. Madachy, Letter to N. J. A. Sloane, Apr 26 1975.
- Jean-Charles Meyrignac, Non-crossing knight tours.
- N. J. A. Sloane, Illustration of initial terms
- Various authors, Uncrossed knight's tours, J. Rec. Math., 2 (1969), 154-157. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Knight's Tour
- L. D. Yarbrough, Uncrossed knight's tours, J. Rec. Math., 1 (No. 3, 1969), 140-142. [Annotated scanned copy]
Crossrefs
Cf. A157416.
Extensions
a(1)=a(2)=0 prepended by Max Alekseyev, Jul 17 2011
Comments