A002928 Magnetization for square lattice.
1, 0, -2, -8, -34, -152, -714, -3472, -17318, -88048, -454378, -2373048, -12515634, -66551016, -356345666, -1919453984, -10392792766, -56527200992, -308691183938, -1691769619240, -9301374102034
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. M. Yeomans, Statistical mechanics of phase transitions, Oxford Univ. Press, 1992, p. 93.
Links
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- David Park, A summation method for crystal statistics, Physica 22 (1956), 932-940.
Crossrefs
Programs
-
Maple
series((1+x)^(1/4)*(1-6*x+x^2)^(1/8)/(1-x)^(1/2),x,40).
-
Mathematica
CoefficientList[Series[(1+x)^(1/4)*(1-6*x+x^2)^(1/8)/(1-x)^(1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 27 2024 *)
Formula
n*a(n) + 6*(-n+1)*a(n-1) + 4*a(n-2) + 6*(n-3)*a(n-3) + (-n+4)*a(n-4) = 0. - R. J. Mathar, Mar 08 2013
a(n) ~ -Gamma(1/8) * (1 + sqrt(2))^(2*n - 1/2) / (Pi * 2^(57/16) * n^(9/8)). - Vaclav Kotesovec, Apr 27 2024
Comments