cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002924 Ferromagnetic susceptibility series for f.c.c. lattice.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 24, -26, 0, 0, 72, 378, -1080, 665, 384, 1968, 2016, -25698, 39552, -3872, 20880, -65727, -379072, 1277646, -986856, 176978, -2163504, -1818996, 27871080, -47138844, 20789424, -36509652, 77055330, 393046656, -1402934816, 1403843388
Offset: 0

Views

Author

Keywords

References

  • C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 421.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002926 (cubic), A002925 (b.c.c.), A002892 (partition function), A003196 (magnetization), A002921 (high-temperature).

Extensions

a(35)-a(40) from Sykes et al. added by Andrey Zabolotskiy, Feb 16 2022

A002928 Magnetization for square lattice.

Original entry on oeis.org

1, 0, -2, -8, -34, -152, -714, -3472, -17318, -88048, -454378, -2373048, -12515634, -66551016, -356345666, -1919453984, -10392792766, -56527200992, -308691183938, -1691769619240, -9301374102034
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. M. Yeomans, Statistical mechanics of phase transitions, Oxford Univ. Press, 1992, p. 93.

Crossrefs

Cf. other structures: A007206, A007207, A002929, A002930, A003193, A003196.
Cf. Potts model: A057374, A057378.
Cf. A002927 (susceptibility).

Programs

  • Maple
    series((1+x)^(1/4)*(1-6*x+x^2)^(1/8)/(1-x)^(1/2),x,40).
  • Mathematica
    CoefficientList[Series[(1+x)^(1/4)*(1-6*x+x^2)^(1/8)/(1-x)^(1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 27 2024 *)

Formula

n*a(n) + 6*(-n+1)*a(n-1) + 4*a(n-2) + 6*(n-3)*a(n-3) + (-n+4)*a(n-4) = 0. - R. J. Mathar, Mar 08 2013
a(n) ~ -Gamma(1/8) * (1 + sqrt(2))^(2*n - 1/2) / (Pi * 2^(57/16) * n^(9/8)). - Vaclav Kotesovec, Apr 27 2024

A002892 Low-temperature series for partition function for spin-1/2 Ising model on f.c.c. lattice.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, -6, 0, 0, 8, 42, -114, 66, 24, 123, 134, -1563, 2262, -405, 846, -2532, -15182, 47961, -37992, 8044, -59694, -57117, 742394, -1233840, 597456, -798392, 1447162, 7898736, -27134598, 27649335
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001407 (high-temperature), A002891 (cubic lattice), A002924 (susceptibility), A003196 (magnetization).

Extensions

Name clarified, missing minus signs added to a(12) and a(17), and terms a(22) and beyond added by Andrey Zabolotskiy, Feb 14 2022

A003193 Magnetization for body-centered cubic lattice.

Original entry on oeis.org

1, 0, 0, 0, -2, 0, 0, -16, 18, 0, -168, 384, -314, -1632, 6264, -9744, -10014, 86976, -205344, 80176, 1009338, -3579568, 4575296, 8301024, -54012882, 112640896, -5164464, -694845120, 2160781086
Offset: 0

Views

Author

Keywords

References

  • C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 421.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002929 (cubic), A003196 (f.c.c.), A002925 (ferromagnetic susceptibility), A003194 (antiferromagnetic susceptibility).

Extensions

a(27)-a(28) from Sykes et al. (1973) added by Andrey Zabolotskiy, Feb 16 2022
Showing 1-4 of 4 results.