A003233 Numbers k such that A003231(A001950(k)) = A001950(A003231(k)).
1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
Programs
-
Haskell
a003233 n = a003233_list !! (n-1) a003233_list = [x | x <- [1..], a003231 (a001950 x) == a001950 (a003231 x)] -- Reinhard Zumkeller, Oct 03 2014
-
Mathematica
a3221[n_] := Floor[n(5 + Sqrt[5])/2]; a1950[n_] := Floor[n(1 + Sqrt[5])^2/4]; Select[Range[100], a3221[a1950[#]] == a1950[a3221[#]]&] (* Jean-François Alcover, Aug 04 2018 *)
-
PARI
A001950(n) = floor(n*(sqrt(5)+3)/2); A003231(n) = floor(n*(sqrt(5)+5)/2); lista(nn) = { for(n=1, nn, if (A003231(A001950(n)) == A001950(A003231(n)), print1(n, ", ")));} \\ Michel Marcus, Feb 02 2014
-
Python
from math import isqrt from itertools import count, islice def A003233_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k,count(max(1,startvalue))) A003233_list = list(islice(A003233_gen(),30)) # Chai Wah Wu, Sep 02 2022
Extensions
More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014
Comments