cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003235 a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C(k^2,n).

Original entry on oeis.org

1, 1, 6, 72, 1322, 32550, 1003632, 37162384, 1605962556, 79330914540, 4409098539560, 272297452742304, 18499002436677336, 1371050716542451672, 110085169034456183232, 9519063815009322326400, 881914870734754844035088, 87154631117420724492647184
Offset: 0

Views

Author

Keywords

References

  • H. W. Gould, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A346184.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n,k] * Binomial[k^2, n], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 13 2020 *)

Formula

a(n) ~ c * d^n * (n-1)!, where d = 4 / (w*(2-w)) = 6.17655460948348035823168... and c = exp(1/2 - w^2/8) / (2*Pi*sqrt(2*(1-w)/w)) = 0.150381859108542022051646532351211728293419626579836320368956458003898775818..., where w = -LambertW(-2*exp(-2)) = -A226775. - Vaclav Kotesovec, Dec 13 2020, updated Jul 09 2021
A003236(n) / a(n) ~ -2 / LambertW(-2*exp(-2)) = 4.92155363456750509... - Vaclav Kotesovec, Jul 09 2021

Extensions

More terms from Sean A. Irvine, Mar 19 2015

A346183 a(n) = Sum_{k=0..n} binomial(n,k) * binomial((k+1)^2, n).

Original entry on oeis.org

1, 5, 48, 824, 20690, 687582, 28488488, 1415047216, 81971972604, 5426378062364, 404122795201488, 33442612446777888, 3044479614669988040, 302377373253190949560, 32537275691504428919040, 3770760967834168275347072, 468240057706224000130749072, 62024410203403175896065018192
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 09 2021

Keywords

Crossrefs

Cf. A003236.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[(k+1)^2, n], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * binomial((k+1)^2, n)); \\ Michel Marcus, Jul 09 2021

Formula

a(n) ~ 2^(2*n) * n^(n - 1/2) / (sqrt(Pi*(1+c)) * c^(n + 1/2) * (2+c)^n * exp(n - 1/2 + c^2/8)), where c = LambertW(2*exp(-2)) = 0.21771510575709011079475830443...
Showing 1-2 of 2 results.