cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003237 Number of partially achiral planted trees with n nodes.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 10, 19, 33, 62, 110, 204, 366, 677, 1223, 2254, 4089, 7526, 13692, 25171, 45882, 84291, 153860, 282509, 516192, 947469, 1732477, 3179083, 5816301, 10670751, 19531034, 35826689, 65596323, 120312363, 220340374, 404096665, 740212002, 1357426934
Offset: 0

Views

Author

Keywords

Comments

The g.f. z*(1-z**2-z**3-z**4+z**5)/(1-z-2*z**2+3*z**5) conjectured by Simon Plouffe in his 1992 dissertation is wrong.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    G := subs(x=x^2,G000081); x*G/(x-G);
    # second Maple program:
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; unapply(add(b(k)*x^k, k=1..n),x) end: a:= n-> coeff(series(x* B(floor(n/2))(x^2)/ (x-B(floor(n/2))(x^2)), x=0, n+2),x,n): seq(a(n), n=0..38); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    max = 38; a81[n_] := a81[n] = If[n <= 1, n, Sum[Sum[d*a81[d], {d, Divisors[j]}]*a81[n-j], {j, 1, n-1}]/(n-1)]; G81[x_] = Sum[a81[k]*x^k, {k, 0, max}]; G[x_] = G81[x^2]; A[x_] = x*(G[x]/(x-G[x])); CoefficientList[Series[A[x], {x, 0, max}], x] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)

Formula

G.f.: A(x) = x*G(x)/(x-G(x)), where G(x) = G000081(x^2), G000081(x) = x+x^2+2*x^3+ ... being the g.f. for A000081.
a(n) ~ c * d^n, where d = 1.8332964415228533737988849634129366404833316666328290543862325494628120733... is the root of the equation Sum_{k>=1} A000081(k) / d^(2*k-1) = 1 and c = 0.1345213691789841963849894554233223547113840356469443704501548999022472... - Vaclav Kotesovec, Dec 13 2020

Extensions

Entry revised Mar 25 2004