A003292 Number of 4-line partitions of n decreasing across rows.
1, 2, 4, 7, 11, 19, 29, 46, 70, 106, 156, 232, 334, 482, 686, 971, 1357, 1894, 2612, 3592, 4900, 6656, 8980, 12077, 16137, 21490, 28476, 37600, 49422, 64763, 84511, 109953, 142539, 184244, 237368, 304996, 390688, 499189, 636059, 808489, 1025017, 1296595, 1636173, 2060246, 2588440, 3245381, 4060519, 5070574
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herbert S. Wilf, Generatingfunctiontology, Academic Press, 1994, page 106.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- M. S. Cheema and W. E. Conway, Numerical investigation of certain asymptotic results in the theory of partitions, Math. Comp., 26 (1972), 999-1005.
Programs
-
Mathematica
Rest[p=Product[1/(1 - x^i), {i, 1, 20}]; CoefficientList[Series[p^2 (1 - x) (1 - x^2), {x, 0, 20}], x]] (* Geoffrey Critzer, Nov 28 2011 *) (* adapted by Vincenzo Librandi, Oct 12 2017 *)
-
PARI
\\ program includes a(0) = 1: c(n) = 1 + (n>=3); N = 66; x = 'x + O('x^N); Vec( 1 / prod(n=1, N, (1 - x^k)^c(n)) ) \\ Joerg Arndt, Oct 12 2017
Formula
G.f.: Product (1 - x^k)^-{c(k)}; c(k) = 1, 1, 2, 2, 2, 2, ....
Extensions
More terms from Joerg Arndt, Oct 12 2017
Comments