cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003318 a(n+1) = 1 + a( floor(n/1) ) + a( floor(n/2) ) + ... + a( floor(n/n) ).

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 28, 39, 55, 74, 100, 127, 167, 208, 261, 322, 399, 477, 581, 686, 820, 967, 1142, 1318, 1545, 1778, 2053, 2347, 2697, 3048, 3486, 3925, 4441, 4986, 5610, 6250, 7024, 7799, 8680, 9604, 10673, 11743, 13008, 14274, 15718, 17239, 18937, 20636
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A003238. - Emeric Deutsch, Dec 17 2014

References

  • M. K. Goldberg and É. M. Livshits, Minimal universal trees. (Russian) Mat. Zametki 4 1968 371-379.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. C. Read, personal communication.

Crossrefs

Cf. A003238 (first differences).

Programs

  • Maple
    A[1]:= 1;
    for n from 1 to 99 do
      A[n+1]:= 1 + add(A[floor(n/k)],k=1..n)
    od:
    seq(A[n],n=1..100); # Robert Israel, Aug 24 2014
  • Mathematica
    a[1]=1;a[n_]:=1+Sum[a[Floor[(n-1)/k]],{k,n-1}]
    Array[a,50] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
  • PARI
    N=1001;
    v=vector(N,n,n==1);
    for(n=1, N-1, v[n+1]=1 + sum(k=1, n, v[floor(n/k)]) );
    for(n=1, N, print(n," ",v[n])); \\ b-file
    \\ Joerg Arndt, Aug 25 2014
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A003318(n):
        if n == 0:
            return 1
        c, j = n+1, 1
        k1 = (n-1)//j
        while k1 > 1:
            j2 = (n-1)//k1 + 1
            c += (j2-j)*A003318(k1)
            j, k1 = j2, (n-1)//j2
        return c-j # Chai Wah Wu, Mar 31 2021

Formula

G.f. A(x) satisfies: A(x) = (x/(1 - x)) * (1 + Sum_{k>=1} (1 - x^k) * A(x^k)). - Ilya Gutkovskiy, Feb 25 2020