A003329 Numbers that are the sum of 6 positive cubes.
6, 13, 20, 27, 32, 34, 39, 41, 46, 48, 53, 58, 60, 65, 67, 69, 72, 76, 79, 83, 84, 86, 90, 91, 95, 97, 98, 102, 104, 105, 109, 110, 116, 117, 121, 123, 124, 128, 130, 132, 135, 136, 137, 139, 142, 143, 144, 146, 147, 151, 153, 154, 156, 158, 160, 161, 162, 163, 165, 170
Offset: 1
Examples
From _David A. Corneth_, Aug 01 2020: (Start) 1647 is in the sequence as 1647 = 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 10^3. 3319 is in the sequence as 3319 = 5^3 + 5^3 + 5^3 + 6^3 + 10^3 + 12^3. 4038 is in the sequence as 4038 = 3^3 + 3^3 + 6^3 + 8^3 + 8^3 + 14^3. (End)
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Cubic Number.
Crossrefs
Cf. A057907 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
Programs
-
Mathematica
max = 200; cmax = Ceiling[(max - 5)^(1/3)]; cc = Array[c, 6]; iter = Sequence @@ Transpose[ {cc, Join[{1}, Most[cc]], Table[cmax, {6}]}]; Union[ Reap[ Do[ a = Total[cc^3]; If[a <= max, Sow[a]], Evaluate[iter]]][[2, 1]]] (* Jean-François Alcover, Oct 23 2012 *)
-
PARI
(A003329_upto(N,k=6,m=3)=[i|i<-[1..#N=sum(n=1,sqrtnint(N,m), 'x^n^m, O('x^N))^k], polcoef(N,i)])(200) \\ M. F. Hasler, Aug 02 2020
-
Python
from collections import Counter from itertools import combinations_with_replacement as multi_combs def aupto(lim): c = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2))) s = filter(lambda x: x<=lim, (sum(mc) for mc in multi_combs(c, 6))) counts = Counter(s) return sorted(k for k in counts) print(aupto(170)) # Michael S. Branicky, Jun 13 2021
Extensions
More terms from Eric W. Weisstein
Comments