cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003405 G.f.: (1 + x^4 + x^7 + 2*x^8 + x^9 + x^12 + x^16)/Product_{i=1..8} (1 - x^i).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 19, 30, 41, 59, 80, 113, 149, 202, 264, 350, 447, 578, 730, 928, 1155, 1444, 1777, 2193, 2667, 3249, 3915, 4721, 5635, 6728, 7967, 9432, 11083, 13016, 15191, 17717, 20544, 23801, 27440, 31604, 36234, 41501, 47345, 53954, 61260, 69480, 78546, 88699
Offset: 0

Views

Author

Keywords

Comments

Enumerates certain partially ordered sets of integers.

References

  • J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. The g.f. is P(t) on page 122.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    (1+x^4+x^7+2*x^8+x^9+x^12+x^16)/mul(1-x^i,i=1..8);
  • Mathematica
    CoefficientList[Series[(1+x^4+x^7+2x^8+x^9+x^12+x^16)/Product[1-x^i,{i,8}],{x,0,50}],x] (* or *) LinearRecurrence[{1,1,0,0,-1,0,-1,0,-1,0,1,2,1,0,1,-1,-1,-2,-1,-1,1,0,1,2,1,0,-1,0,-1,0,-1,0,0,1,1,-1},{1,1,2,3,6,8,13,19,30,41,59,80,113,149,202,264,350,447,578,730,928,1155,1444,1777,2193,2667,3249,3915,4721,5635,6728,7967,9432,11083,13016,15191},50] (* Harvey P. Dale, Jan 30 2024 *)

Formula

a(n) = p(n,8) + p(n-4,8) + p(n-7,8) + 2*p(n-8,8) + p(n-9,8) + p(n-12,8) + p(n-16,8) where p(n,k) is the number of partitions of n into at most k parts. - Sean A. Irvine, Apr 22 2015

Extensions

Entry revised by N. J. A. Sloane, Apr 22 2015