cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003434 Number of iterations of phi(x) at n needed to reach 1.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 6, 4, 5, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 4, 6, 5, 5, 5, 6, 5, 6, 5, 5, 6, 6, 5, 6, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 5, 6, 7, 5, 7, 5, 6, 6, 7, 5, 6, 6, 6, 6, 6, 6, 7, 5, 6, 6, 7, 6, 7, 6, 6
Offset: 1

Views

Author

Keywords

Comments

Each number n>1 occurs for the first time at the position A007755(n+1) and for the last time at 2*3^(n-1). - Ivan Neretin, Mar 24 2015

Examples

			If n=164 the trajectory is {164,80,32,16,8,4,2,1}. Its length is 8, thus a(164)=7.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. V. Subbarao, On a function connected with phi(n), J. Madras Univ. B. 27 (1957), pp. 327-333.

Crossrefs

Programs

  • Haskell
    a003434 n = fst $ until ((== 1) . snd)
                            (\(i, x) -> (i + 1, a000010 x)) (0, n)
    -- Reinhard Zumkeller, Feb 08 2013, Jul 03 2011
    
  • Maple
    A003434 := proc(n)
        local a, e;
        e := n ;
        a :=0 ;
        while e > 1 do
            a := a+1 ;
            e := numtheory[phi](e) ;
        end do:
        a;
    end proc:
    seq(A003434(n),n=1..40) ; # R. J. Mathar, Jan 09 2017
  • Mathematica
    f[n_] := Length@ NestWhileList[ EulerPhi, n, # != 1 &] - 1; Array[f, 105] (* Robert G. Wilson v, Feb 07 2012 *)
  • PARI
    A003434(n)=for(k=0,n, n>1 || return(k);n=eulerphi(n)) /* Works because the loop limits are evaluated only once. Using while(...) takes 50% more time. */ \\ M. F. Hasler, Jul 01 2009
    
  • Python
    from sympy import totient
    def A003434(n):
        c, m = 0, n
        while m > 1:
            c += 1
            m = totient(m)
        return c # Chai Wah Wu, Nov 14 2021

Formula

a(n) = A049108(n) - 1.
By the definition of a(n) we have for n >= 2 the recursion a(n) = a(phi(n)) + 1. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
Pillai proved that log(n/2)/log(3) + 1 <= a(n) <= log(n)/log(2) + 1. - Charles R Greathouse IV, Mar 22 2012