cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 54 results. Next

A064415 a(1) = 0, a(n) = iter(n) if n is even, a(n) = iter(n)-1 if n is odd, where iter(n) = A003434(n) = smallest number of iterations of Euler totient function phi needed to reach 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 6, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5
Offset: 1

Views

Author

Christian WEINSBERG (cweinsbe(AT)fr.packardbell.org), Sep 30 2001

Keywords

Comments

a(n) is the exponent of the eventual power of 2 reached when starting from k=n and then iterating the nondeterministic map k -> k-(k/p), where p can be any odd prime factor of k, for example, the largest. Note that each original odd prime factor p of n brings its own share of 2's to the final result after it has been completely processed (with all intermediate odd primes also eliminated, leaving only 2's). As no 2's are removed, also all 2's already present in the original n are included in the eventual power of 2 that is reached, implying that a(n) >= A007814(n). - Antti Karttunen, May 13 2020

Crossrefs

The 2-adic valuation of A309243.
Partial sums of A334195. Cf. A053044 for partial sums of this sequence.
Cf. also A334097 (analogous sequence when using the map k -> k + k/p).

Programs

Formula

For all integers m >0 and n>0 a(m*n)=a(m)+a(n). The function a(n) is completely additive. The smallest integer q which satisfy the equation a(q)=n is 2^q, the greatest is 3^q. For all integers n>0, the counter image off n, a^-1(n) is finite.
a(1) = 0 and a(n) = A054725(n) for n>=2. - Joerg Arndt, Apr 08 2014, A-number corrected by Antti Karttunen, May 13 2020
From Antti Karttunen, May 13 2020: (Start)
For n > 1, a(n) = A003434(n) - A000035(n).
a(1) = 0, a(2) = 1 and for n > 2, a(n) = sum(p | n, a(p-1)), where sum is over all primes p that divide n, with multiplicity. (Cf. A054725).
a(1) = 0, a(2) = 1 and a(p) = 1 + a((p-1)/2) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [From above formula, 1+ compensates for the "lost" 2]
a(n) = A007814(A309243(n)). [From Rémy Sigrist's conjecture in the latter sequence. This reduces to a(n) = sum(p|n, a(p-1)) formula above, thus holds also]
If A209229(n) = 1 [when n is a power of 2], a(n) = A007814(n), otherwise a(n) = a(n-A052126(n)) = a(A171462(n)). [From the definition in the comments]
a(n) = A064097(n) - A329697(n).
a(2^k) = a(3^k) = k.
(End)

Extensions

More terms from David Wasserman, Jul 22 2002
Definition corrected by Reinhard Zumkeller, Sep 18 2011

A334196 a(1) = 0, then after the first differences of A003434.

Original entry on oeis.org

0, 1, 1, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 1, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, 0, 0, 0, 0, -1, 1, -1, 1, 0, 1, -2, 1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -2, 2, -1, 0, 0, 1, -1, 1, -1, 0, 1, 0, -1, 1, 0, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, -1, 1, 1, -2, 2, -2, 1, 0, 1, -2, 1, 0, 0, 0, 0, 0, 1, -2, 1, 0, 1, -1, 1, -1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2020

Keywords

Comments

Also, from a(2) onward the first differences of A049108, and from a(3) onward the first differences of A032358.

Crossrefs

Programs

  • Mathematica
    Differences[Array[Length[FixedPointList[EulerPhi, #]] &, 100, 0]] (* Paolo Xausa, Aug 18 2024 *)
  • PARI
    A003434(n) = for(k=0, n, n>1 || return(k); n=eulerphi(n));
    A334196(n) = if(1==n,0,A003434(n)-A003434(n-1));

Formula

a(1) = 0; and for n > 1, a(n) = A003434(n) - A003434(n-1).

A289152 Ordinal transform of A003434.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 1, 6, 2, 7, 3, 4, 1, 8, 5, 6, 7, 8, 2, 9, 3, 10, 11, 12, 4, 13, 5, 6, 7, 8, 9, 14, 10, 15, 11, 12, 1, 16, 13, 14, 15, 16, 2, 17, 18, 19, 3, 20, 4, 17, 5, 21, 22, 23, 6, 24, 7, 25, 26, 8, 9, 27, 10, 11, 12, 28, 13, 29, 14, 30, 15
Offset: 1

Views

Author

Rémy Sigrist, Jun 26 2017

Keywords

Comments

The ordinal transform mentioned is the one described in A002260: the ordinal transform of a sequence b(n) is the sequence t(n) = number of values in b(1),...,b(n) which are equal to b(n).
This sequence has graphical similarities with A286343.

Examples

			The first terms are:
    n    A003434(n)      a(n)
   --    ----------      ----
    1           0          1
    2           1          1
    3           2          1
    4           2          2
    5           3          1
    6           2          3
    7           3          2
    8           3          3
    9           3          4
   10           3          5
   11           4          1
   12           3          6
   13           4          2
   14           3          7
   15           4          3
   16           4          4
   17           5          1
   18           3          8
   19           4          5
   20           4          6
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 75}, Function[s, Table[Count[#, Last@ #] &@ Take[s, n], {n, nn}]]@ Table[Length@ NestWhileList[EulerPhi, n, # != 1 &] - 1, {n, nn}]] (* Michael De Vlieger, Jun 27 2017 *)
  • PARI
    A003434(n) = for (k=0, oo, if (n==1, return (k), n=eulerphi(n)))
    o = vector(10); for (n=1, 100, v=A003434(n); o[1+v]++; print1(o[1+v] ", "))

A078767 Let f(n) = A003434(n) be the number of iterations of phi needed to reach 1. Then a(n) = max(f(1), f(2), ..., f(n)).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Jon Perry, Jan 09 2003

Keywords

Crossrefs

Cf. A003434.

Programs

  • PARI
    epr(m,c)=if (c>0,m=eulerphi(m); c--; epr(m,c),m) x=1; for (n=1,100, while (epr(n,x)>1, x++); print1(x","))

Extensions

Description corrected by Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003

A000010 Euler totient function phi(n): count numbers <= n and prime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
Offset: 1

Views

Author

Keywords

Comments

Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - _Michael Somos_, Aug 27 2013
From _Eduard I. Vatutin_, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
  • M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 154-156.
  • C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
  • Paulo Ribenboim, The New Book of Prime Number Records.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 28-33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 162-167.

Crossrefs

Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).

Programs

  • Axiom
    [eulerPhi(n) for n in 1..100]
    
  • Haskell
    a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
    
  • Julia
    # Computes the first N terms of the sequence.
    function A000010List(N)
        phi = [i for i in 1:N + 1]
        for i in 2:N + 1
            if phi[i] == i
                for j in i:i:N + 1
                    phi[j] -= div(phi[j], i)
        end end end
    return phi end
    println(A000010List(68))  # Peter Luschny, Sep 03 2023
  • Magma
    [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
    with(numtheory): phi := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]),i=1..nops(t1)); end; # version 2
    # Alternative without library function:
    A000010List := proc(N) local i, j, phi;
        phi := Array([seq(i, i = 1 .. N+1)]);
        for i from 2 to N + 1 do
            if phi[i] = i then
                for j from i by i to N + 1 do
                    phi[j] := phi[j] - iquo(phi[j], i) od
            fi od;
    return phi end:
    A000010List(68);  # Peter Luschny, Sep 03 2023
  • Mathematica
    Array[EulerPhi, 70]
  • Maxima
    makelist(totient(n),n,0,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
    
  • Python
    from sympy.ntheory import totient
    print([totient(i) for i in range(1, 70)])  # Indranil Ghosh, Mar 17 2017
    
  • Python
    # Note also the implementation in A365339.
    
  • Sage
    def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
    
  • Sage
    [euler_phi(n) for n in range(1, 70)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]

A182850 a(n) = number of iterations that n requires to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

The fixed points of the x -> A181819(x) map are 1 and 2. Note that the x -> A000005(x) map has the same fixed points, and that A000005(n) = A181819(n) iff n is cubefree (cf. A004709). Under the x -> A181819(x) map, it seems significantly easier to generalize about which kinds of integers take a given number of iterations to reach a fixed point than under the x -> A000005(x) map.
Also the number of steps in the reduction of the multiset of prime factors of n wherein one repeatedly takes the multiset of multiplicities. For example, the a(90) = 5 steps are {2,3,3,5} -> {1,1,2} -> {1,2} -> {1,1} -> {2} -> {1}. - Gus Wiseman, May 13 2018

Examples

			A181819(6) = 4; A181819(4) = 3; A181819(3) = 2; A181819(2) = 2. Therefore, a(6) = 3, a(4) = 2, a(3)= 1, and a(2) = 0.
		

Crossrefs

A182857 gives values of n where a(n) increases to a record.

Programs

  • Haskell
    a182850 n = length $ takeWhile (`notElem` [1,2]) $ iterate a181819 n
    -- Reinhard Zumkeller, Mar 26 2012
    
  • Mathematica
    Table[If[n<=2,0,Length[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]-1],{n,100}] (* Gus Wiseman, May 13 2018 *)
  • Scheme
    ;; With memoization-macro definec.
    (definec (A182850 n) (if (<= n 2) 0 (+ 1 (A182850 (A181819 n))))) ;; Antti Karttunen, Feb 05 2016

Formula

For n > 2, a(n) = a(A181819(n)) + 1.
a(n) = 0 iff n equals 1 or 2.
a(n) = 1 iff n is an odd prime (A000040(n) for n>1).
a(n) = 2 iff n is a composite perfect prime power (A025475(n) for n>1).
a(n) = 3 iff n is a squarefree composite integer or a power of a squarefree composite integer (cf. A182853).
a(n) = 4 iff n's prime signature a) contains at least two distinct numbers, and b) contains no number that occurs less often than any other number (cf. A182854).

A092693 Sum of iterated phi(n).

Original entry on oeis.org

0, 1, 3, 3, 7, 3, 9, 7, 9, 7, 17, 7, 19, 9, 15, 15, 31, 9, 27, 15, 19, 17, 39, 15, 35, 19, 27, 19, 47, 15, 45, 31, 35, 31, 39, 19, 55, 27, 39, 31, 71, 19, 61, 35, 39, 39, 85, 31, 61, 35, 63, 39, 91, 27, 71, 39, 55, 47, 105, 31, 91, 45, 55, 63, 79, 35, 101, 63, 79, 39, 109, 39, 111
Offset: 1

Views

Author

T. D. Noe, Mar 04 2004

Keywords

Comments

Iannucci, Moujie and Cohen examine perfect totient numbers: n such that a(n) = n.

Examples

			a(100) = 71 because the iterations of phi (40, 16, 8, 4, 2, 1) sum to 71.
		

Crossrefs

Cf. A003434 (iterations of phi(n) needed to reach 1), A092694 (iterated phi product).
Cf. A082897 and A091847 (perfect totient numbers).

Programs

  • Haskell
    a092693 1 = 0
    a092693 n = (+ 1) $ sum $ takeWhile (/= 1) $ iterate a000010 $ a000010 n
    -- Reinhard Zumkeller, Oct 27 2011
    
  • Mathematica
    nMax=100; a=Table[0, {nMax}]; Do[e=EulerPhi[n]; a[[n]]=e+a[[e]], {n, 2, nMax}]; a (* T. D. Noe *)
    Table[Plus @@ FixedPointList[EulerPhi, n] - (n + 1), {n, 72}] (* Alonso del Arte, Jan 29 2007 *)
  • PARI
    a(n)=my(k);while(n>1,k+=n=eulerphi(n));k \\ Charles R Greathouse IV, Mar 22 2012
    
  • Python
    from sympy import totient
    from math import prod
    def f(n):
        m = n
        while m > 1:
            m = totient(m)
            yield m
    def A092693(n): return sum(f(n)) # Chai Wah Wu, Nov 14 2021

Formula

a(1) = 0, a(n) = phi(n) + a(phi(n))
a(n) = A053478(n) - n. - Vladeta Jovovic, Jul 02 2004
Erdős & Subbarao prove that a(n) ~ phi(n) for almost all n. In particular, a(n) < n for almost all n. The proportion of numbers up to N for which a(n) > n is at most 1/log log log log N. - Charles R Greathouse IV, Mar 22 2012

A049108 a(n) is the number of iterations of Euler phi function needed to reach 1 starting at n (n is counted).

Original entry on oeis.org

1, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 5, 5, 6, 4, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 5, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7, 7, 6, 7, 7, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 7, 8, 6, 8, 6, 7, 7, 8, 6, 7, 7, 7, 7, 7, 7, 8, 6, 7, 7, 8, 7, 8, 7, 7
Offset: 1

Views

Author

Keywords

Examples

			If n=164 the trajectory is {164,80,32,16,8,4,2,1}. Its length is 8, thus a(164)=8.
		

Crossrefs

Cf. A000010, A007755. Equals A003434 + 1. Row lengths of A375478.

Programs

  • Maple
    A049108 := proc(n)
        local a, e;
        e := n ;
        a :=0 ;
        while e > 1 do
            a := a+1 ;
            e := numtheory[phi](e) ;
        end do:
        1+a;
    end proc:
    seq(A049108(n),n=1..60) ; # R. J. Mathar, Sep 08 2021
  • Mathematica
    f[n_] := Length[NestWhileList[ EulerPhi, n, # != 1 &]]; Array[f, 105] (* Robert G. Wilson v, Feb 07 2012 *)
  • PARI
    a(n)=my(t=1);while(n>1,t++;n=eulerphi(n));t \\ Charles R Greathouse IV, Feb 07 2012

Formula

By the definition of a(n) we have for n >= 2 the recursion a(n) = a(Phi(n)) + 1. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
log_3 n << a(n) << log_2 n. - Charles R Greathouse IV, Feb 07 2012

A007755 Smallest number m such that the trajectory of m under iteration of Euler's totient function phi(n) [A000010] contains exactly n distinct numbers, including m and the fixed point.

Original entry on oeis.org

1, 2, 3, 5, 11, 17, 41, 83, 137, 257, 641, 1097, 2329, 4369, 10537, 17477, 35209, 65537, 140417, 281929, 557057, 1114129, 2384897, 4227137, 8978569, 16843009, 35946497, 71304257, 143163649, 286331153, 541073537, 1086374209, 2281701377, 4295098369
Offset: 1

Views

Author

Pepijn van Erp [ vanerp(AT)sci.kun.nl ]

Keywords

Comments

Least integer k such that the number of iterations of Euler phi function needed to reach 1 starting at k (k is counted) is n.
a(n) is smallest number in the class k(n) which groups families of integers which take the same number of iterations of the totient function to evolve to 1. The maximum is 2*3^(n-1).
Shapiro shows that the smallest number is greater than 2^(n-1). Catlin shows that if a(n) is odd and composite, then its factors are among the a(k), k < n. For example a(12) = a(5) a(8). There is a conjecture that all terms of this sequence are odd. - T. D. Noe, Mar 08 2004
The indices of odd prime terms are given by n=A136040(k)+2 for k=1,2,3,.... - T. D. Noe, Dec 14 2007
Shapiro mentions on page 30 of his paper the conjecture that a(n) is prime for each n > 1, but a(13) is composite and so the conjecture fails. - Charles R Greathouse IV, Oct 28 2011

Examples

			a(3) = 3 because trajectory={3,2,1}. n=1: a(1)=1 because trajectory={1}
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.
  • R. K. Guy, Unsolved Problems in Number Theory, 2nd Ed. New York: Springer-Verlag, p. 97, 1994, Section B41.

Crossrefs

Cf. A000010, A003434, A049108, A092873 (prime factors of a(n)), A060611, A098196, A227946.
A060611 has the same initial terms but is a different sequence.

Programs

  • Haskell
    a007755 = (+ 1) . fromJust . (`elemIndex` a003434_list) . (subtract 1)
    -- Reinhard Zumkeller, Feb 08 2013, Jul 03 2011
  • Mathematica
    f[n_] := Length[ NestWhileList[ EulerPhi, n, Unequal, 2]] - 1; a = Table[0, {30}]; Do[b = f[n]; If[a[[b]] == 0, a[[b]] = n; Print[n, " = ", b]], {n, 1, 22500000}] (* Robert G. Wilson v *)

Formula

a(n) = smallest m such that A049108(m)=n.
Alternatively, a(n) = smallest m such that A003434(m)=n-1.
a(n+2) ~ 2^n.

Extensions

More terms from David W. Wilson, May 15 1997
Additional comments from James S. Cronen (cronej(AT)rpi.edu)

A227944 Number of iterations of "take odd part of phi" (A053575) to reach 1 from n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 4, 1, 3, 2, 1, 2, 3, 3, 2, 2, 3, 3, 4, 1, 2, 2, 3, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 1, 4, 2, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 2, 4, 3, 1, 2, 3, 2, 2
Offset: 1

Views

Author

Max Alekseyev, Oct 03 2013

Keywords

Comments

a(n) >= A256757(n) - 1.

Examples

			a(18) = 2 because it takes two steps to reach 1 from 18: phi(18) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1.
a(19) = 3 because it takes three steps to reach 1 from 19: phi(19) = 18, the odd part of which is 9, and phi(9) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1.
		

Crossrefs

A variant of A049115: a(n) = A049115(n) unless n is a power of 2.

Programs

  • Haskell
    a227944 n = fst $
                until ((== 1) . snd) (\(i, x) -> (i + 1, a053575 x)) (0, n)
    -- Reinhard Zumkeller, Oct 09 2013
  • Mathematica
    oddPhi[n_] := Module[{phi = EulerPhi[n]}, phi/2^IntegerExponent[phi, 2]]; Table[Length[NestWhileList[oddPhi[#] &, n, # > 1 &]] - 1, {n, 100}] (* T. D. Noe, Oct 07 2013 *)

Formula

For n > 1, a(n) = a(A053575(n)) + 1.
Showing 1-10 of 54 results. Next