cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A092873 Prime factors of the odd terms of A007755.

Original entry on oeis.org

3, 5, 11, 17, 41, 83, 137, 257, 641, 1097, 17477, 65537, 140417, 557057, 2384897, 4227137, 35946497, 71304257, 541073537, 2281701377, 2336497860617, 600470787982337, 2278291849363457, 4538923050090497, 38280596832649217
Offset: 1

Views

Author

T. D. Noe, Mar 08 2004

Keywords

Comments

Catlin shows that if A007755(n) is odd and composite, then its factors are among the A007755(k), k < n. Note that the five Fermat primes are in this sequence.

Extensions

More terms from T. D. Noe, Aug 03 2005
a(21) corrected and comment deleted by T. D. Noe, Nov 18 2008

A293715 Numbers k such that A007755(k) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 21, 23, 24, 27, 28, 31, 33, 43, 51, 53, 54, 57, 60, 61, 62, 65, 67, 68, 69, 71, 73, 76, 79, 81, 83, 84, 89, 91, 110, 111, 115, 116, 118, 121, 124, 126, 129, 131, 132, 138, 139, 144, 145, 147, 149, 150, 153, 156
Offset: 1

Views

Author

Amiram Eldar, Oct 15 2017

Keywords

Comments

Shapiro conjectured that A007755(n) is prime for all n > 1, and verified it up to n = 10. Mills showed that A007755(34)=(2^16+1)^2 is composite.
The least number n such that Omega(A007755(n)) = 1, 2, 3, ... is 2, 13, 30, 58, 74, 90, 106, 122, 146, 162, 178, 194, 210, 226, ... (Omega is the number of prime factors with multiplicity, A001222).

Examples

			The first 11 values of A007755(n) after n=1 are the primes: 2, 3, 5, 11, 17, 41, 83, 137, 257, 641, 1097, 2329, therefore 2-12 are in the sequence.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, B41, p. 148.

Crossrefs

Programs

  • Mathematica
    s = Import[b007755.txt", "Data"][[All, 2]]; a = Flatten[Position[s, _?(PrimeQ[#] &)]] (* using the b-File from A007755 *)

A040176 Apart from initial terms, same as A007755, which is a better version.

Original entry on oeis.org

1, 3, 5, 11, 17, 41, 83, 137, 257, 641, 1097, 2329, 4369, 10537, 17477, 35209, 65537
Offset: 1

Views

Author

Keywords

A309672 Composite terms of A007755.

Original entry on oeis.org

2329, 4369, 10537, 35209, 281929, 1114129, 8978569, 16843009, 143163649, 286331153, 1086374209, 4295098369, 9198250129, 18325194049, 36507844609, 73016672273, 139055899009, 277033877569, 586397253889, 1103840280833, 4673067091009, 9382516064513, 17868687216769
Offset: 1

Views

Author

Jeppe Stig Nielsen, Oct 05 2019

Keywords

Comments

10537 is a term because it is composite (= 41*257) and the totient (A000010) iterating "trajectory" starting from 10537 and ending in 1 is longer (length 15) than any similar trajectory starting from a (prime or nonprime) N < 10537.

Crossrefs

A000010 Euler totient function phi(n): count numbers <= n and prime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
Offset: 1

Views

Author

Keywords

Comments

Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - _Michael Somos_, Aug 27 2013
From _Eduard I. Vatutin_, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
  • M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 154-156.
  • C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
  • Paulo Ribenboim, The New Book of Prime Number Records.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 28-33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 162-167.

Crossrefs

Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).

Programs

  • Axiom
    [eulerPhi(n) for n in 1..100]
    
  • Haskell
    a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
    
  • Julia
    # Computes the first N terms of the sequence.
    function A000010List(N)
        phi = [i for i in 1:N + 1]
        for i in 2:N + 1
            if phi[i] == i
                for j in i:i:N + 1
                    phi[j] -= div(phi[j], i)
        end end end
    return phi end
    println(A000010List(68))  # Peter Luschny, Sep 03 2023
  • Magma
    [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
    with(numtheory): phi := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]),i=1..nops(t1)); end; # version 2
    # Alternative without library function:
    A000010List := proc(N) local i, j, phi;
        phi := Array([seq(i, i = 1 .. N+1)]);
        for i from 2 to N + 1 do
            if phi[i] = i then
                for j from i by i to N + 1 do
                    phi[j] := phi[j] - iquo(phi[j], i) od
            fi od;
    return phi end:
    A000010List(68);  # Peter Luschny, Sep 03 2023
  • Mathematica
    Array[EulerPhi, 70]
  • Maxima
    makelist(totient(n),n,0,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
    
  • Python
    from sympy.ntheory import totient
    print([totient(i) for i in range(1, 70)])  # Indranil Ghosh, Mar 17 2017
    
  • Python
    # Note also the implementation in A365339.
    
  • Sage
    def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
    
  • Sage
    [euler_phi(n) for n in range(1, 70)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]

A182857 Smallest number that requires exactly n iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

1, 3, 4, 6, 12, 60, 2520, 1286485200, 35933692027611398678865941374040400000
Offset: 0

Views

Author

Matthew Vandermast, Jan 05 2011

Keywords

Comments

a(9) has 296 digits.
Related to Levine's sequence (A011784): A011784(n) = A001222(a(n)) = A001221(a(n+1)) = A051903(a(n+2)) = A071625(a(n+2)). Also see A182858.
Values of n where A182850(n) increases to a record.
The multiplicity of prime(k) in a(n+1) is the k-th largest prime index of a(n), which is A296150(a(n),k). - Gus Wiseman, May 13 2018

Examples

			From _Gus Wiseman_, May 13 2018: (Start)
Like A001462 the following sequence of multisets whose Heinz numbers belong to this sequence is a run-length describing sequence, as the number of k's in row n + 1 is equal to the k-th term of row n.
{2}
{1,1}
{1,2}
{1,1,2}
{1,1,2,3}
{1,1,1,2,2,3,4}
{1,1,1,1,2,2,2,3,3,4,4,5,6,7}
{1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,7,7,7,8,8,9,9,10,10,11,12,13,14}
(End)
		

Crossrefs

Programs

  • Mathematica
    Prepend[Function[m,Times@@Prime/@m]/@NestList[Join@@Table[Table[i,{Reverse[#][[i]]}],{i,Length[#]}]&,{2},8],1] (* Gus Wiseman, May 13 2018 *)

Formula

For n > 0, a(n) = A181819(a(n+1)). For n > 1, a(n) = A181821(a(n-1)).

A003434 Number of iterations of phi(x) at n needed to reach 1.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 6, 4, 5, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 4, 6, 5, 5, 5, 6, 5, 6, 5, 5, 6, 6, 5, 6, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 5, 6, 7, 5, 7, 5, 6, 6, 7, 5, 6, 6, 6, 6, 6, 6, 7, 5, 6, 6, 7, 6, 7, 6, 6
Offset: 1

Views

Author

Keywords

Comments

Each number n>1 occurs for the first time at the position A007755(n+1) and for the last time at 2*3^(n-1). - Ivan Neretin, Mar 24 2015

Examples

			If n=164 the trajectory is {164,80,32,16,8,4,2,1}. Its length is 8, thus a(164)=7.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. V. Subbarao, On a function connected with phi(n), J. Madras Univ. B. 27 (1957), pp. 327-333.

Crossrefs

Programs

  • Haskell
    a003434 n = fst $ until ((== 1) . snd)
                            (\(i, x) -> (i + 1, a000010 x)) (0, n)
    -- Reinhard Zumkeller, Feb 08 2013, Jul 03 2011
    
  • Maple
    A003434 := proc(n)
        local a, e;
        e := n ;
        a :=0 ;
        while e > 1 do
            a := a+1 ;
            e := numtheory[phi](e) ;
        end do:
        a;
    end proc:
    seq(A003434(n),n=1..40) ; # R. J. Mathar, Jan 09 2017
  • Mathematica
    f[n_] := Length@ NestWhileList[ EulerPhi, n, # != 1 &] - 1; Array[f, 105] (* Robert G. Wilson v, Feb 07 2012 *)
  • PARI
    A003434(n)=for(k=0,n, n>1 || return(k);n=eulerphi(n)) /* Works because the loop limits are evaluated only once. Using while(...) takes 50% more time. */ \\ M. F. Hasler, Jul 01 2009
    
  • Python
    from sympy import totient
    def A003434(n):
        c, m = 0, n
        while m > 1:
            c += 1
            m = totient(m)
        return c # Chai Wah Wu, Nov 14 2021

Formula

a(n) = A049108(n) - 1.
By the definition of a(n) we have for n >= 2 the recursion a(n) = a(phi(n)) + 1. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
Pillai proved that log(n/2)/log(3) + 1 <= a(n) <= log(n)/log(2) + 1. - Charles R Greathouse IV, Mar 22 2012

A049108 a(n) is the number of iterations of Euler phi function needed to reach 1 starting at n (n is counted).

Original entry on oeis.org

1, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 5, 5, 6, 4, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 5, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7, 7, 6, 7, 7, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 7, 8, 6, 8, 6, 7, 7, 8, 6, 7, 7, 7, 7, 7, 7, 8, 6, 7, 7, 8, 7, 8, 7, 7
Offset: 1

Views

Author

Keywords

Examples

			If n=164 the trajectory is {164,80,32,16,8,4,2,1}. Its length is 8, thus a(164)=8.
		

Crossrefs

Cf. A000010, A007755. Equals A003434 + 1. Row lengths of A375478.

Programs

  • Maple
    A049108 := proc(n)
        local a, e;
        e := n ;
        a :=0 ;
        while e > 1 do
            a := a+1 ;
            e := numtheory[phi](e) ;
        end do:
        1+a;
    end proc:
    seq(A049108(n),n=1..60) ; # R. J. Mathar, Sep 08 2021
  • Mathematica
    f[n_] := Length[NestWhileList[ EulerPhi, n, # != 1 &]]; Array[f, 105] (* Robert G. Wilson v, Feb 07 2012 *)
  • PARI
    a(n)=my(t=1);while(n>1,t++;n=eulerphi(n));t \\ Charles R Greathouse IV, Feb 07 2012

Formula

By the definition of a(n) we have for n >= 2 the recursion a(n) = a(Phi(n)) + 1. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
log_3 n << a(n) << log_2 n. - Charles R Greathouse IV, Feb 07 2012

A058812 Irregular triangle of rows of numbers in increasing order. Row 1 = {1}. Row m + 1 contains all numbers k such that phi(k) is in row m.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 12, 14, 18, 11, 13, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 30, 36, 38, 42, 54, 17, 23, 25, 29, 31, 32, 33, 34, 35, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 52, 56, 57, 58, 60, 62, 63, 66, 70, 72, 74, 76, 78, 81, 84, 86, 90, 98, 108, 114, 126
Offset: 0

Views

Author

Labos Elemer, Jan 03 2001

Keywords

Comments

Nontotient values (A007617) are also present as inverses of some previous value.
Old name was: Irregular triangle of inverse totient values of integers generated recursively. Initial value is 1. The inverse-phi sets in increasing order are as follows: {1} -> {2} -> {3, 4, 6} -> {5, 7, 8, 9, 10, 12, 14, 18} -> ... The terms of each row are arranged by magnitude. The next row starts when the increase of terms is violated. 2^n is included in the n-th row. - David A. Corneth, Mar 26 2019

Examples

			Triangle begins:
  1;
  2;
  3, 4, 6;
  5, 7, 8, 9, 10, 12, 14, 18;
  ...
Row 3 is {3, 4, 6} as for each number k in this row, phi(k) is in row 2. - _David A. Corneth_, Mar 26 2019
		

Crossrefs

A058811 gives the number of terms in each row.
Cf. also A334111.

Programs

  • Mathematica
    inversePhi[m_?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m_] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p-1)); n = m; nn = {}; While[n <= nmax, If[EulerPhi[n] == m, AppendTo[nn, n]]; n++]; nn]; row[n_] := row[n] = inversePhi /@ row[n-1] // Flatten // Union; row[0] = {1}; row[1] = {2}; Table[row[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Dec 06 2012 *)

Extensions

Definition revised by T. D. Noe, Nov 30 2007
New name from David A. Corneth, Mar 26 2019

A098196 Smallest nonprime number which if used as initial term for iteration of the A000010[x] function, results in list-to-fixed-point of length=n, or 0 if no such number exists.

Original entry on oeis.org

1, 0, 4, 8, 15, 25, 51, 85, 187, 289, 685, 1285, 2329, 4369, 10537, 18649, 35209, 66049, 150289, 281929, 598553, 1114129, 2387089, 4491589, 8978569, 16843009, 36087169, 71861329, 143163649, 286331153, 579117769, 1086374209, 2307492233
Offset: 1

Views

Author

Labos Elemer, Sep 13 2004

Keywords

Comments

Remark: length-of-iteration means the number of distinct terms to fixed point [including start and end]. While number of iterations[=required operations] equals length-1.
The smallest composite number is the smallest product of primes in A007755 such that the phi-iteration has exactly n terms. [From T. D. Noe, Sep 18 2008]

Examples

			Iteration lists for the first 5 terms: {1},{0},{4,2,1},{8,4,2,1},{15,8,4,2,1},..
		

Crossrefs

Extensions

Corrected and extended by T. D. Noe, Sep 18 2008
Showing 1-10 of 24 results. Next