cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003437 Number of unlabeled Hamiltonian circuits on n-octahedron (cross polytope); also number of circular chord diagrams with n chords, modulo symmetries.

Original entry on oeis.org

0, 1, 2, 7, 29, 196, 1788, 21994, 326115, 5578431, 107026037, 2269254616, 52638064494, 1325663757897, 36021577975918, 1050443713185782, 32723148860301935, 1084545122297249077, 38105823782987999742, 1414806404051118314077
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A003436 for labeled case.
See also A278990, A007474.

Programs

  • Mathematica
    nn = 20; M = Array[0&, {2nn, 2nn}];
    Mget[n_, k_] := Which[n < 0, 0, n==0, 1, n==1, 1-Mod[k, 2], n==2, k - Mod[k, 2], True, M[[n, k]]];
    Mset[n_, k_, v_] := (M[[n, k]] = v);
    Minit = Module[{tmp = 0}, For[n = 3, n <= 2nn, n++, For[k = 1, k <= 2nn, k++, tmp = If[OddQ[k], k(n-1) Mget[n-2, k] + Mget[n-4, k], Mget[n-1, k] + k(n-1) Mget[n-2, k] - Mget[n-3, k] + Mget[n-4, k]]; Mset[n, k, tmp]]]];
    A007474[n_] := Sum[EulerPhi[d] (Mget[2n/d, d] - Mget[2n/d - 2, d]), {d, Divisors[2n]}]/(2n);
    a[n_] := A007474[n]/2 + (Mget[n, 2] - Mget[n-1, 2] + Mget[n-2, 2])/4;
    Array[a, nn] (* Jean-François Alcover, Aug 12 2018, after Gheorghe Coserea *)
  • PARI
    N = 20; M = matrix(2*N, 2*N);
    Mget(n,k) = { if (n<0, 0, n==0, 1, n==1, 1-(k%2), n==2, k-(k%2), M[n,k]) };
    Mset(n,k,v) = { M[n,k] = v;};
    Minit() = {
      my(tmp = 0);
      for (n=3, 2*N, for(k=1, 2*N,
        tmp = if (k%2, k*(n-1) * Mget(n-2, k) + Mget(n-4, k),
        Mget(n-1, k) + k*(n-1) * Mget(n-2, k) - Mget(n-3, k) + Mget(n-4, k));
        Mset(n, k, tmp)));
    };
    Minit();
    A007474(n) = sumdiv(2*n, d, eulerphi(d) * (Mget(2*n/d, d) - Mget(2*n/d-2, d)))/(2*n);
    a(n) = A007474(n)/2 + (Mget(n,2) - Mget(n-1,2) + Mget(n-2,2))/4;
    vector(N, n, a(n))  \\ Gheorghe Coserea, Dec 10 2016

Formula

a(n) ~ 2^(n-3/2) * n^(n-1) / exp(n+1). - Vaclav Kotesovec, Dec 10 2016