A003442 Number of nonequivalent dissections of an n-gon into (n-3) polygons by nonintersecting diagonals rooted at a cell up to rotation.
1, 2, 11, 48, 208, 858, 3507, 14144, 56698, 226100, 898942, 3565920, 14124496, 55887930, 220985795, 873396480, 3450940830, 13633173180, 53855628554, 212750148000, 840496068160, 3320817060132, 13122294166126, 51860761615488
Offset: 4
Keywords
Examples
Case n=5: A pentagon can be dissected into 1 quadrilateral and 1 triangle. Either one of these can be chosen as the root cell so a(n)=2. - _Andrew Howroyd_, Nov 23 2017
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
- Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
- Andrey Zabolotskiy, Illustration for n = 4,5,6
Programs
-
PARI
DissectionsModCyclicRooted(v)={my(n=#v); my(q=vector(n)); q[1]=serreverse(x-sum(i=3,#v,x^i*v[i])/x + O(x*x^n)); for(i=2, n, q[i]=q[i-1]*q[1]); my(vars=variables(q[1])); my(u(m,r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m,vars))); my(p=O(x*x^n) + sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d,i/d))/i))); vector(n,i,polcoeff(p,i))} { my(v=DissectionsModCyclicRooted(apply(i->if(i>=3&&i<=4,y^(i-3) + O(y^2)), [1..25]))); apply(p->polcoeff(p,1), v[4..#v]) } \\ Andrew Howroyd, Nov 22 2017
Extensions
More terms from Sean A. Irvine, May 05 2015
Name clarified by Andrew Howroyd, Nov 22 2017
Comments