cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295259 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 4, 13, 16, 1, 1, 6, 22, 64, 52, 1, 1, 6, 35, 147, 315, 170, 1, 1, 8, 49, 302, 1074, 1727, 579, 1, 1, 8, 67, 518, 2763, 8216, 9658, 1996, 1, 1, 10, 87, 843, 5916, 27168, 64798, 55657, 7021
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called f.

Examples

			Array begins:
  =========================================================
  n\k|    3      4       5        6         7         8
  ---|-----------------------------------------------------
   1 |    1      1       1        1         1         1 ...
   2 |    1      1       1        1         1         1 ...
   3 |    2      4       4        6         6         8 ...
   4 |    6     13      22       35        49        67 ...
   5 |   16     64     147      302       518       843 ...
   6 |   52    315    1074     2763      5916     11235 ...
   7 |  170   1727    8216    27168     70984    159180 ...
   8 |  579   9658   64798   274360    876790   2319678 ...
   9 | 1996  55657  521900  2837208  11069760  34582800 ...
  10 | 7021 325390 4272967 29828330 142148343 524470485 ...
  ...
		

Crossrefs

Columns k=3..5 are A003446, A005035, A005039.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    F[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#] &]/k;
    T[n_, k_] := (F[n, k] + If[OddQ[k], If[OddQ[n], u[(n-1)/2, k, (k-1)/2], u[n/2-1, k, k-1]], If[OddQ[n], u[(n-1)/2, k, k/2+1], u[n/2-1, k, k]]])/2;
    Table[T[n-k-1, k], {n, 1, 14}, {k, n-2, 3, -1}] // Flatten (* Jean-François Alcover, Jan 19 2018, translated from PARI *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    F(n,k) = {sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k}
    T(n,k) = {(F(n,k) + if(k%2, if(n%2, u((n-1)/2,k,(k-1)/2), u(n/2-1,k,(k-1))), if(n%2, u((n-1)/2,k,k/2+1), u(n/2-1,k,k)) ))/2;}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def F(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    def T(n, k): return (F(n, k) + ((u((n - 1)//2, k, (k - 1)//2) if n%2 else u(n//2 - 1, k, k - 1)) if k%2 else (u((n - 1)//2, k, k//2 + 1) if n%2 else u(n//2 - 1, k, k))))//2
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/2 for fixed k.

A005039 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals rooted at a cell up to rotation and reflection.

Original entry on oeis.org

1, 1, 4, 22, 147, 1074, 8216, 64798, 521900, 4272967, 35447724, 297308810, 2516830890, 21476307960, 184530904560, 1595190209002, 13863857007924, 121067796450692, 1061770618201680, 9347742325179544, 82584606893075739
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A295259.
Cf. A002293, A005037 (no mirror-image symmetries), A003446 (triangles), A005035 (quadrilaterals).

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x]^5 + 4*HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x^5] + 5*HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x^2]^2 + 5*x*HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x^2]^4)/10, {x, 0, 25}], x]] (* Vaclav Kotesovec, Mar 13 2016 *)

Formula

G.f.: (1/10)*x*(u^5(x) + 4*u(x^5) + 5*u^2(x^2) + 5*x*u^4(x^2)) where u(x) is the g.f. for A002293. - Sean A. Irvine, Mar 12 2016
a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi) * n^(3/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016

Extensions

More terms from Sean A. Irvine, Mar 12 2016
Name edited by Andrew Howroyd, Nov 20 2017

A000908 Atom-rooted polyenoids with n edges with symmetry class C_s.

Original entry on oeis.org

0, 0, 1, 4, 14, 47, 164, 565, 1982, 6977, 24850, 89082, 321855, 1169853, 4276923, 15713799, 57998270, 214934984, 799473752, 2983682702, 11169374372, 41929478873, 157807392886, 595340271682, 2250901007539, 8527699269192, 32369066434276
Offset: 0

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

Crossrefs

Programs

  • Maple
    U0 := (1-sqrt(1-4*x))/2/x ;
    V0 := 1+x*subs(x=x^2,U0) ;
    C := ( subs(x=x^2,U0)^3 -3*subs(x=x^4,U0)*subs(x=x^2,V0) -subs(x=x^6,U0) +3*subs(x=x^6,V0) )/6 ; # (19)
    taylor(%,x=0,60) ;
    L := gfun[seriestolist](%) ;
    seq(op(2*i+1,L),i=0..(nops(L)-1)/2) ; # R. J. Mathar, Jul 26 2019
  • Mathematica
    u0[x_] := (1 - Sqrt[1 - 4 x])/(2 x); v0[x_] := 1 + x u0[x^2];
    gf = Simplify[(u0[x]^3 - 3 u0[x^2] v0[x] - u0[x^3] + 3 v0[x^3])/6]
    CoefficientList[gf + O[x]^30, x] (* Andrey Zabolotskiy, Feb 08 2023 *)

Formula

a(n) = A003446(n+1) - u((n-3)/6) - (u(n/3) - u((n-3)/6))/2 - (u(n/2) + (u((n+1)/2) - u((n-3)/6))) for n > 0 where u(n) = binomial(2*n, n)/(n+1) if n is an integer and 0 otherwise. - Sean A. Irvine, Oct 05 2015

Extensions

More terms from Sean A. Irvine, Oct 05 2015
Showing 1-3 of 3 results.