A220881 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation.
1, 1, 4, 12, 43, 143, 504, 1768, 6310, 22610, 81752, 297160, 1086601, 3991995, 14732720, 54587280, 202997670, 757398510, 2834510744, 10637507400, 40023636310, 150946230006, 570534578704, 2160865067312, 8199711378716, 31170212479588, 118686578956272
Offset: 4
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
- P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
- Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
Programs
-
Maple
C:=n->binomial(2*n,n)/(n+1); T2:= proc(n) local t1; global C; t1 := (n-3)*C(n-2)/(2*n); if n mod 4 = 0 then t1:=t1+C(n/4-1)/2 fi; if n mod 2 = 0 then t1:=t1+C(n/2-1)/4 fi; t1; end; [seq(T2(n),n=4..40)];
-
Mathematica
c[n_] := Binomial[2*n, n]/(n+1); T2[n_] := Module[{t1}, t1 = (n-3)*c[n-2]/(2*n); If[Mod[n, 4] == 0, t1 = t1 + c[n/4-1]/2]; If[Mod[n, 2] == 0, t1 = t1 + c[n/2-1]/4]; t1]; Table[T2[n], {n, 4, 40}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *) a[n_] := Sum[EulerPhi[d]*Binomial[(2n-4)/d, n/d], {d, Divisors[GCD[2n-4, n] ]}]/(2n-4); Array[a, 30, 4] (* Jean-François Alcover, Dec 02 2017, after Andrew Howroyd *)
-
PARI
a(n) = if(n>=4, sumdiv(gcd(2*n-4, n), d, eulerphi(d)*binomial((2*n-4)/d, n/d))/(2*n-4)) \\ Andrew Howroyd, Nov 25 2017
Formula
a(n) = (1/(2n-4)) Sum_{d |(2n-4, n)} phi(d)*binomial((2n-4)/d, n/d) for n >= 4. - Wouter Meeussen, Aug 03 2002
Extensions
Name clarified by Andrew Howroyd, Nov 25 2017
Comments