A003449 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation and reflection.
1, 1, 3, 7, 24, 74, 259, 891, 3176, 11326, 40942, 148646, 543515, 1996212, 7367075, 27294355, 101501266, 378701686, 1417263770, 5318762098, 20011847548, 75473144396, 285267393358, 1080432637662, 4099856060808, 15585106611244, 59343290815356
Offset: 4
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
- P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
- Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
Programs
-
Maple
C:=n->binomial(2*n,n)/(n+1); T30:=proc(n) local t1; global C; if n mod 2 = 0 then t1:=(1/4-(3/(4*n)))*C(n-2) + (3/8)*C(n/2-1) + (1-3/n)*C(n/2-2); if n mod 4 = 0 then t1:=t1+C(n/4-1)/4 fi; else t1:=(1/4-(3/(4*n)))*C(n-2) + (1/2)*C((n-3)/2); fi; t1; end; [seq(T30(n),n=4..40)]; # N. J. A. Sloane, Dec 28 2012
-
Mathematica
c = CatalanNumber; T30[n_] := Module[{t1}, If[EvenQ[n], t1 = (1/4 - (3/(4*n)))*c[n - 2] + (3/8)*c[n/2 - 1] + (1 - 3/n)*c[n/2 - 2]; If[Mod[n, 4] == 0, t1 = t1 + c[n/4 - 1]/4], t1 = (1/4 - (3/(4*n)))*c[n-2] + (1/2)*c[(n-3)/2]]; t1]; Table[T30[n], {n, 4, 40}] (* Jean-François Alcover, Dec 14 2017, after N. J. A. Sloane *)
-
PARI
\\ See A295419 for DissectionsModDihedral() { my(v=DissectionsModDihedral(apply(i->if(i>=3&&i<=4, y^(i-3) + O(y^2)), [1..25]))); apply(p->polcoeff(p, 1), v[4..#v]) } \\ Andrew Howroyd, Nov 24 2017
Extensions
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017
Comments