cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295634 Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 6, 7, 4, 1, 3, 11, 24, 24, 12, 1, 3, 17, 51, 89, 74, 27, 1, 4, 26, 109, 265, 371, 259, 82, 1, 4, 36, 194, 660, 1291, 1478, 891, 228, 1, 5, 50, 345, 1477, 3891, 6249, 6044, 3176, 733, 1, 5, 65, 550, 3000, 10061, 21524, 29133, 24302, 11326, 2282
Offset: 3

Views

Author

Andrew Howroyd, Nov 24 2017

Keywords

Examples

			Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1,  1;
1, 2,  3,   3;
1, 2,  6,   7,   4;
1, 3, 11,  24,  24,   12;
1, 3, 17,  51,  89,   74,   27;
1, 4, 26, 109, 265,  371,  259,  82;
1, 4, 36, 194, 660, 1291, 1478, 891, 228;
...
		

Crossrefs

Row sums are A001004.
Column k=3 is A003453.
Diagonals include A000207, A003449, A003450.

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral()
    T=DissectionsModDihedral(apply(i->y, [1..12]));
    for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)

A003450 Number of nonequivalent dissections of an n-gon into n-4 polygons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 2, 6, 24, 89, 371, 1478, 6044, 24302, 98000, 392528, 1570490, 6264309, 24954223, 99253318, 394409402, 1565986466, 6214173156, 24647935156, 97732340680, 387428854374, 1535588541762, 6085702368796, 24116801236744, 95569050564444, 378718095630676
Offset: 5

Views

Author

Keywords

Comments

In other words, the number of (n - 5)-dissections of an n-gon modulo the dihedral action.
Equivalently, the number of two-dimensional faces of the (n-3)-dimensional associahedron modulo the dihedral action.
The dissection will always be composed of either 1 pentagon and n-5 triangles or 2 quadrilaterals and n-6 triangles. - Andrew Howroyd, Nov 24 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A295634.

Programs

  • Maple
    C:=n->binomial(2*n,n)/(n+1);
    T32:=proc(n) local t1; global C;
    if n mod 2 = 0 then
    t1 :=  (n-3)^2*(n-4)*C(n-2)/(8*n*(2*n-5));
    if n mod 5 = 0 then t1:=t1+(2/5)*C(n/5-1) fi;
    if n mod 2 = 0 then t1:=t1+((3*(n-4)*(n-1))/(16*(n-3)))*C(n/2-1) fi;
    else
    t1 :=  (n-3)^2*(n-4)*C(n-2)/(8*n*(2*n-5));
    if n mod 5 = 0 then t1:=t1+(2/5)*C(n/5-1) fi;
    if n mod 2 = 1 then t1:=t1+((n^2-2*n-11)/(8*(n-4)))*C((n-3)/2) fi;
    fi;
    t1; end;
    [seq(T32(n),n=5..40)];
  • Mathematica
    c = CatalanNumber;
    T32[n_] := Module[{t1}, If[EvenQ[n], t1 = (n-3)^2*(n-4)*c[n-2]/(8*n*(2*n - 5)); If[Mod[n, 5] == 0, t1 = t1 + (2/5)*c[n/5-1]]; If[EvenQ[n], t1 = t1 + ((3*(n-4)*(n-1))/(16*(n-3)))*c[n/2-1]], t1 = (n-3)^2*(n-4)*c[n-2]/(8*n *(2*n - 5)); If[Mod[n, 5] == 0, t1 = t1 + (2/5) * c[n/5-1]]; If[OddQ[n], t1 = t1 + ((n^2 - 2*n - 11)/(8*(n-4)))*c[(n-3)/2]]]; t1];
    Table[T32[n], {n, 5, 40}] (* Jean-François Alcover, Dec 11 2017, translated from Maple *)
  • PARI
    \\ See A295419 for DissectionsModDihedral()
    { my(v=DissectionsModDihedral(apply(i->if(i>=3&&i<=5, y^(i-3) + O(y^3)), [1..30]))); apply(p->polcoeff(p, 2), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017

Formula

See Maple program.

Extensions

Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017

A220881 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 4, 12, 43, 143, 504, 1768, 6310, 22610, 81752, 297160, 1086601, 3991995, 14732720, 54587280, 202997670, 757398510, 2834510744, 10637507400, 40023636310, 150946230006, 570534578704, 2160865067312, 8199711378716, 31170212479588, 118686578956272
Offset: 4

Views

Author

N. J. A. Sloane, Dec 28 2012

Keywords

Comments

This is almost identical to A003444, but has a different offset and a more precise definition.
In other words, the number of almost-triangulations of an n-gon modulo the cyclic action.
Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the cyclic action.
The dissection will always be composed of one quadrilateral and n-4 triangles. - Andrew Howroyd, Nov 25 2017
Also number of necklaces of 2 colors with 2n-4 beads and n black ones. - Wouter Meeussen, Aug 03 2002

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A295633.

Programs

  • Maple
    C:=n->binomial(2*n,n)/(n+1);
    T2:= proc(n) local t1; global C;
    t1 :=  (n-3)*C(n-2)/(2*n);
    if n mod 4 = 0 then t1:=t1+C(n/4-1)/2 fi;
    if n mod 2 = 0 then t1:=t1+C(n/2-1)/4 fi;
    t1; end;
    [seq(T2(n),n=4..40)];
  • Mathematica
    c[n_] := Binomial[2*n, n]/(n+1);
    T2[n_] := Module[{t1}, t1 = (n-3)*c[n-2]/(2*n); If[Mod[n, 4] == 0, t1 = t1 + c[n/4-1]/2]; If[Mod[n, 2] == 0, t1 = t1 + c[n/2-1]/4]; t1];
    Table[T2[n], {n, 4, 40}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *)
    a[n_] := Sum[EulerPhi[d]*Binomial[(2n-4)/d, n/d], {d, Divisors[GCD[2n-4, n] ]}]/(2n-4);
    Array[a, 30, 4] (* Jean-François Alcover, Dec 02 2017, after Andrew Howroyd *)
  • PARI
    a(n) = if(n>=4, sumdiv(gcd(2*n-4, n), d, eulerphi(d)*binomial((2*n-4)/d, n/d))/(2*n-4)) \\ Andrew Howroyd, Nov 25 2017

Formula

a(n) = (1/(2n-4)) Sum_{d |(2n-4, n)} phi(d)*binomial((2n-4)/d, n/d) for n >= 4. - Wouter Meeussen, Aug 03 2002

Extensions

Name clarified by Andrew Howroyd, Nov 25 2017
Showing 1-3 of 3 results.