cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003458 Erdős-Selfridge function: a(n) is the least number m > n+1 such that the least prime factor of binomial(m, n) is > n.

Original entry on oeis.org

3, 6, 7, 7, 23, 62, 143, 44, 159, 46, 47, 174, 2239, 239, 719, 241, 5849, 2098, 2099, 43196, 14871, 19574, 35423, 193049, 2105, 36287, 1119, 284, 240479, 58782, 341087, 371942, 6459, 69614, 37619, 152188, 152189, 487343, 767919, 85741, 3017321
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A003458 := proc(n)
        local m;
        for m from n+2 do
            if A020639( binomial(m,n)) > n then
                return m ;
            end if;
        end do:
    end proc:
    seq(A003458(n),n=1..16) ; # R. J. Mathar, Mar 27 2024
  • Mathematica
    f[n_] := Block[{k = n + 2, p = Table[Prime[i], {i, 1, PrimePi[n]}]}, While[ First[ Sort[ Mod[ Binomial[k, n], p]]] == 0, k++ ]; k]; Table[ f[n], {n, 1, 40}]
    esf[n_]:=Module[{m=n+2},While[FactorInteger[Binomial[m,n]][[1,1]]<=n, m++];m]; Array[esf,50] (* Harvey P. Dale, Nov 03 2013 *)
  • PARI
    a(n) = local(m,i,f); m=0; i=n+1; while(m<=n,i=i+1; m=factor(binomial(i,n))[1,1]); i /* Ralf Stephan */

Extensions

Extended by Robert G. Wilson v, Dec 01 2002