cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003512 A Beatty sequence: floor(n*(sqrt(3) + 2)).

Original entry on oeis.org

3, 7, 11, 14, 18, 22, 26, 29, 33, 37, 41, 44, 48, 52, 55, 59, 63, 67, 70, 74, 78, 82, 85, 89, 93, 97, 100, 104, 108, 111, 115, 119, 123, 126, 130, 134, 138, 141, 145, 149, 153, 156, 160, 164, 167, 171, 175, 179, 182, 186
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003511 (complement), A019973 (sqrt(3)+2).

Programs

  • Maple
    Digits := 60: A003512 := proc(n) trunc( evalf( n*(sqrt(3)+2) )); end;
  • Mathematica
    Table[Floor[n (Sqrt@ 3 + 2)], {n, 50}] (* Michael De Vlieger, Oct 08 2016 *)
  • Python
    from gmpy2 import isqrt
    def A003512(n):
        return 2*n + int(isqrt(3*n**2))  # Chai Wah Wu, Oct 08 2016

Formula

a(n) = floor(n*(sqrt(3)+2)). - Michel Marcus, Jan 05 2015
For n >= 0, a(n) = 2n + largest integer m such that m^2 <= 3*n^2. - Chai Wah Wu, Oct 08 2016
From Miko Labalan, Dec 03 2016: (Start)
For n > 0, a(n) = 4*floor(n*(sqrt(3)-1)) + 3*floor(n*(2-sqrt(3))) + 3;
a(0) = 0, a(n) = a(n - 1) + A182778(n) - A182778(n - 1) - 1.
(End)