cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003513 Number of regular sequences of length n.

Original entry on oeis.org

1, 2, 6, 27, 192, 2280, 47097, 1735803, 115867758, 14137353466, 3172486137982, 1315460211433262, 1011773137731861712, 1448486351628212391462, 3872217739919424676743213
Offset: 2

Views

Author

Keywords

Comments

From Nathaniel Johnston, Jun 29 2023: (Start)
A sequence x_1, ..., x_n is regular if 1 = x_1 <= x_2 <= ... <= x_n and x_j <= Sum_{i=1..j-1} x_i for all j >= 2. It is immediate from this definition that x_2 = 1 and x_j <= 2^(j-2) for all j >= 2.
A sequence x_1, x_2, ..., x_n is regular if and only if (x_2, ..., x_n) is a complete partition of x_2+...+x_n (see A126796 for the definition of a complete partition). As a result, the number of regular sequences with sum equal to n is given by A126796(n-1).
(End)

Examples

			From _Nathaniel Johnston_, Jun 29 2023: (Start)
When n = 4, there are 6 regular sequences:
1,1,1,1
1,1,1,2
1,1,1,3
1,1,2,2
1,1,2,3
1,1,2,4
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.
Cf. A126796.

Programs

  • Maple
    A003513 := proc() local a,b,n ; a := {[1,1]} ; n := 3 ; while true do b := {} ; for s in a do subsa := combinat[choose](s) ; for i in subsa do newa := add(k,k=i) ; if newa >= op(-1,s) then b := b union {[op(s),newa]} ; fi ; od; od; print(n,nops(b) ) ; a := b ; n := n+1 ; od; end: A003513() ; # R. J. Mathar, Oct 22 2007

Extensions

a(9) from R. J. Mathar, Oct 22 2007
a(10) from Sean A. Irvine, Jun 15 2015
a(11)-a(16) from Bert Dobbelaere, Dec 28 2020