A003513 Number of regular sequences of length n.
1, 2, 6, 27, 192, 2280, 47097, 1735803, 115867758, 14137353466, 3172486137982, 1315460211433262, 1011773137731861712, 1448486351628212391462, 3872217739919424676743213
Offset: 2
Examples
From _Nathaniel Johnston_, Jun 29 2023: (Start) When n = 4, there are 6 regular sequences: 1,1,1,1 1,1,1,2 1,1,1,3 1,1,2,2 1,1,2,3 1,1,2,4 (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Marc Davio, Unpublished notes, 1975, from a letter to N. J. A. Sloane sent in May 1975.
- Peter C. Fishburn and Fred S. Roberts, Uniqueness in finite measurement, Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)
- Peter C. Fishburn and Fred S. Roberts, Uniqueness in finite measurement, in Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099). [Annotated scan of five pages only]
- Peter C. Fishburn et al., Van Lier Sequences, Discrete Appl. Math. 27 (1990), pp. 209-220.
- Nathaniel Johnston and Sarah Plosker, Laplacian {-1,0,1}- and {-1,1}-diagonalizable graphs, arXiv:2308.15611 [math.CO], 2023.
Crossrefs
Programs
-
Maple
A003513 := proc() local a,b,n ; a := {[1,1]} ; n := 3 ; while true do b := {} ; for s in a do subsa := combinat[choose](s) ; for i in subsa do newa := add(k,k=i) ; if newa >= op(-1,s) then b := b union {[op(s),newa]} ; fi ; od; od; print(n,nops(b) ) ; a := b ; n := n+1 ; od; end: A003513() ; # R. J. Mathar, Oct 22 2007
Extensions
a(9) from R. J. Mathar, Oct 22 2007
a(10) from Sean A. Irvine, Jun 15 2015
a(11)-a(16) from Bert Dobbelaere, Dec 28 2020
Comments