cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A126796 Number of complete partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, 31, 39, 55, 71, 100, 125, 173, 218, 291, 366, 483, 600, 784, 971, 1244, 1538, 1957, 2395, 3023, 3693, 4605, 5604, 6942, 8397, 10347, 12471, 15235, 18309, 22267, 26619, 32219, 38414, 46216, 54941, 65838, 77958, 93076, 109908
Offset: 0

Views

Author

Brian Hopkins, Feb 20 2007

Keywords

Comments

A partition of n is complete if every number 1 to n can be represented as a sum of parts of the partition. This generalizes perfect partitions, where the representation for each number must be unique.
A partition is complete iff each part is no more than 1 more than the sum of all smaller parts. (This includes the smallest part, which thus must be 1.) - Franklin T. Adams-Watters, Mar 22 2007
For n > 0: a(n) = sum of n-th row in A261036 and also a(floor(n/2)) = A261036(n,floor((n+1)/2)). - Reinhard Zumkeller, Aug 08 2015
a(n+1) is the number of partitions of n such that each part is no more than 2 more than the sum of all smaller parts (generalizing Adams-Watters's criterion). Bijection: each partition counted by a(n+1) must contain a 1, removing that gives a desired partition of n. - Brian Hopkins, May 16 2017
A partition (x_1, ..., x_k) is complete if and only if 1, x_1, ..., x_k is a "regular sequence" (see A003513 for definition). As a result, the number of complete partitions with n parts is given by A003513(n+1). - Nathaniel Johnston, Jun 29 2023

Examples

			There are a(5) = 4 complete partitions of 5:
  [1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], and [1, 1, 3].
G.f.: 1 = 1*(1-x) + 1*x*(1-x)*(1-x^2) + 1*x^2*(1-x)*(1-x^2)*(1-x^3) + 2*x^3*(1-x)*(1-x^2)*(1-x^3)*(1-x^4) + 2*x^4*(1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5) + ...
From _Gus Wiseman_, Oct 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions:
  (1)  (11)  (21)   (211)   (221)    (321)     (421)      (3221)
             (111)  (1111)  (311)    (2211)    (2221)     (3311)
                            (2111)   (3111)    (3211)     (4211)
                            (11111)  (21111)   (4111)     (22211)
                                     (111111)  (22111)    (32111)
                                               (31111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

For parts instead of sums we have A000009 (sc. coverings), ranks A055932.
The strict case is A188431, complement A365831.
These partitions have ranks A325781.
First column k = 0 of A365923.
The complement is counted by A365924, ranks A365830.

Programs

  • Haskell
    import Data.MemoCombinators (memo3, integral, Memo)
    a126796 n = a126796_list !! n
    a126796_list = map (pMemo 1 1) [0..] where
       pMemo = memo3 integral integral integral p
       p   0 = 1
       p s k m
         | k > min m s = 0
         | otherwise   = pMemo (s + k) k (m - k) + pMemo s (k + 1) m
    -- Reinhard Zumkeller, Aug 07 2015
  • Maple
    isCompl := proc(p,n) local m,pers,reps,f,lst,s; reps := {}; pers := combinat[permute](p); for m from 1 to nops(pers) do lst := op(m,pers); for f from 1 to nops(lst) do s := add( op(i,lst),i=1..f); reps := reps union {s}; od; od; for m from 1 to n do if not m in reps then RETURN(false); fi; od; RETURN(true); end: A126796 := proc(n) local prts, res,p; prts := combinat[partition](n); res :=0; for p from 1 to nops(prts) do if isCompl(op(p,prts),n) then res := res+1; fi; od; RETURN(res); end: for n from 1 to 40 do printf("%d %d ",n,A126796(n)); od; # R. J. Mathar, Feb 27 2007
    # At the beginning of the 2nd Maple program replace the current 15 by any other positive integer n in order to obtain a(n). - Emeric Deutsch, Mar 04 2007
    with(combinat): a:=proc(n) local P,b,k,p,S,j: P:=partition(n): b:=0: for k from 1 to numbpart(n) do p:=powerset(P[k]): S:={}: for j from 1 to nops(p) do S:=S union {add(p[j][i],i=1..nops(p[j]))} od: if nops(S)=n+1 then b:=b+1 else b:=b: fi: od: end: seq(a(n),n=1..30); # Emeric Deutsch, Mar 04 2007
    with(combinat): n:=15: P:=partition(n): b:=0: for k from 1 to numbpart(n) do p:=powerset(P[k]): S:={}: for j from 1 to nops(p) do S:=S union {add(p[j][i],i=1..nops(p[j]))} od: if nops(S)=n+1 then b:=b+1 else b:=b: fi: od: b; # Emeric Deutsch, Mar 04 2007
  • Mathematica
    T[n_, k_] := T[n, k] = If[k <= 1, 1, If[n < 2k-1, T[n, Floor[(n+1)/2]], T[n, k-1] + T[n-k, k]]];
    a[n_] := T[n, Floor[(n+1)/2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 11 2017, after Franklin T. Adams-Watters *)
    nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]]; Table[Length[Select[IntegerPartitions[n], nmz[#]=={}&]],{n,0,15}] (* Gus Wiseman, Oct 14 2023 *)
  • PARI
    {T(n,k)=if(k<=1,1,if(n<2*k-1,T(n,floor((n+1)/2)),T(n,k-1)+T(n-k,k)))}
    {a(n)=T(n,floor((n+1)/2))} /* If modified to save earlier results, this would be efficient. */ /* Franklin T. Adams-Watters, Mar 22 2007 */
    
  • PARI
    /* As coefficients in g.f.: */
    {a(n)=local(A=[1,1]);for(i=1,n+1,A=concat(A,0);A[#A]=polcoeff(1-sum(m=1,#A,A[m]*x^m*prod(k=1,m,1-x^k +x*O(x^#A))),#A) );A[n+1]}
    for(n=0,50,print1(a(n),",")) /* Paul D. Hanna, Mar 06 2012 */
    

Formula

G.f.: 1 = Sum_{n>=0} a(n)*x^n*Product_{k=1..n+1} (1-x^k). - Paul D. Hanna, Mar 08 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6))) / sqrt(n) + (25/16 - 1679*Pi^2/6912)/n). - Vaclav Kotesovec, May 24 2018, extended Nov 02 2019
a(n) = A000041(n) - A365924(n). - Gus Wiseman, Oct 14 2023

Extensions

More terms from R. J. Mathar, Feb 27 2007
More terms from Emeric Deutsch, Mar 04 2007
Further terms from Franklin T. Adams-Watters and David W. Wilson, Mar 22 2007

A005269 a(n) = number of length-n sequences s with s[1]=1, s[2]=1, s[k-1] <=s[k] <= s[k-2]+s[k-1] (s is called a sub-Fibonacci sequence of length n).

Original entry on oeis.org

1, 2, 4, 10, 31, 127, 711, 5621, 64049, 1067599, 26287664, 963023487, 52766766100, 4342736509018, 538755914902622, 101067429677072459, 28751803102222498512, 12436935036300286507123, 8200693250120852291693833, 8262592110164298068793701546
Offset: 2

Views

Author

Keywords

Examples

			G.f. = x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 31*x^6 + 127*x^7 + 711*x^8 + 5621*x^9 + ...
a(4)=4 because we have (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,1,2,3).
		

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

Programs

  • Maple
    f[0]:=1:for k from 0 to 19 do f[k+1]:=expand(sum(subs({x=y,y=z},f[k]),z=y..x+y)) od: seq(subs({x=1,y=1},f[k]),k=0..19);
  • PARI
    {a(n) = if(n<2, return(0)); my(c, e); forvec(s=vector(n, i, [1, fibonacci(i)]), e=0; for(k=3, n, if( s[k-1]>s[k] || s[k]>s[k-2]+s[k-1], e=1; break)); if(e, next); c++, 1); c}; /* Michael Somos, Dec 02 2016 */

Formula

See the Maple program; f[k](x, y) is the number of sequences s[1], s[2], ..., s[k+2] such that s[1]=x, s[2]=y, s[j-1] <=s[j] <= s[j-2]+s[j-1]. - Emeric Deutsch and Don Reble, Feb 07 2005

Extensions

More terms from Emeric Deutsch and Don Reble, Feb 07 2005

A005268 Number of elementary sequences of length n.

Original entry on oeis.org

1, 1, 2, 4, 10, 31, 120, 578, 3422, 24504, 208833, 2086777, 24123293, 318800755, 4766262421, 79874304340, 1488227986802
Offset: 1

Views

Author

Keywords

Comments

In Fishburn-Roberts (1989) it is stated that no recurrence is known. - N. J. A. Sloane, Jan 04 2014

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

Extensions

a(11) corrected and a(12)-a(14) from Sean A. Irvine, Apr 27 2016
a(15)-a(17) from Bert Dobbelaere, Dec 28 2020

A005272 Number of Van Lier sequences of length n.

Original entry on oeis.org

1, 2, 6, 26, 164, 1529, 21439, 461481, 15616226, 851607867, 76555549499, 11550559504086
Offset: 2

Views

Author

Keywords

Comments

From Fishburn et al.'s abstract (from the 1990 article): "We study two types of sequences of positive integers which arise from problems in the measurement of comparative judgements of probability. The first type consists of the Van Lier sequences, which are nondecreasing sequences x_1, x_2, ..., x_n of positive integers that start with two 1's and have the property that, whenever j < k <= n, x_k - x_j can be expressed as a sum of terms from the sequence other than x_j. The second type consists of the regular sequences, which are nondecreasing sequences of positive integers that start with two 1's and have the property that each subsequent term is a partial sum of preceding terms. ... We also study one-term extensions of Van Lier sequences and obtain some asymptotic results on the number of Van Lier sequences." - Jonathan Vos Post, Apr 16 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

Extensions

a(9)-a(10) from Sean A. Irvine, Apr 29 2016
a(11)-a(13) from Bert Dobbelaere, Jan 08 2020

A008926 Number of uniquely agreeing sequences.

Original entry on oeis.org

1, 1, 2, 8, 102
Offset: 1

Views

Author

N. J. A. Sloane, Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)

Keywords

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

A234595 Number of elementary sequences of length n, where permutations of the components are taken into account.

Original entry on oeis.org

1, 1, 4, 23, 256, 4647, 128262, 5128503
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2014

Keywords

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

A367106 Triangle read by rows where T(n,k) is the number of complete length-k integer partitions of n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 3, 2, 1, 1, 0, 0, 0, 0, 3, 3, 2, 1, 1, 0, 0, 0, 0, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 0, 0, 4, 8, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 2, 9, 9, 7, 5
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2023

Keywords

Comments

An integer partition of n is complete (ranks A325781) if every integer from 0 to n is the sum of some submultiset of the parts.

Examples

			Triangle begins:
  1
  0  1
  0  0  1
  0  0  1  1
  0  0  0  1  1
  0  0  0  2  1  1
  0  0  0  1  2  1  1
  0  0  0  1  3  2  1  1
  0  0  0  0  3  3  2  1  1
  0  0  0  0  4  5  3  2  1  1
  0  0  0  0  3  5  5  3  2  1  1
  0  0  0  0  4  8  7  5  3  2  1  1
  0  0  0  0  2  9  9  7  5  3  2  1  1
  0  0  0  0  2 11 12 11  7  5  3  2  1  1
  0  0  0  0  1 11 16 13 11  7  5  3  2  1  1
  0  0  0  0  1 14 21 19 15 11  7  5  3  2  1  1
Row n = 11 counts the following partitions (empty columns not shown):
  6311  62111  611111  5111111  41111111  311111111  2111111111  11111111111
  6221  53111  521111  4211111  32111111  221111111
  5321  52211  431111  3311111  22211111
  4421  44111  422111  3221111
        43211  332111  2222111
        42221  322211
        33311  222221
        33221
		

Crossrefs

Column k appears to have A000325(k) nonzero terms.
Column sums are A003513.
Central column T(2n,n) is A007042.
Row sums are A126796, ranks A325781.
The strict case is too sparse, row sums A188431 (complement A365831).
Grouping by maximum instead of length gives A261036.
A000041 counts integer partitions.
A108917 counts knapsack partitions, ranks A299702.
A299701 counts subset-sums of prime indices, firsts A259941.
A365924 counts incomplete partitions, ranks A365830.

Programs

  • Mathematica
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Length[Select[IntegerPartitions[n,{k}],nmz[#]=={}&]],{n,0,15},{k,0,n}]
Showing 1-7 of 7 results.