cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005269 a(n) = number of length-n sequences s with s[1]=1, s[2]=1, s[k-1] <=s[k] <= s[k-2]+s[k-1] (s is called a sub-Fibonacci sequence of length n).

Original entry on oeis.org

1, 2, 4, 10, 31, 127, 711, 5621, 64049, 1067599, 26287664, 963023487, 52766766100, 4342736509018, 538755914902622, 101067429677072459, 28751803102222498512, 12436935036300286507123, 8200693250120852291693833, 8262592110164298068793701546
Offset: 2

Views

Author

Keywords

Examples

			G.f. = x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 31*x^6 + 127*x^7 + 711*x^8 + 5621*x^9 + ...
a(4)=4 because we have (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,1,2,3).
		

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

Programs

  • Maple
    f[0]:=1:for k from 0 to 19 do f[k+1]:=expand(sum(subs({x=y,y=z},f[k]),z=y..x+y)) od: seq(subs({x=1,y=1},f[k]),k=0..19);
  • PARI
    {a(n) = if(n<2, return(0)); my(c, e); forvec(s=vector(n, i, [1, fibonacci(i)]), e=0; for(k=3, n, if( s[k-1]>s[k] || s[k]>s[k-2]+s[k-1], e=1; break)); if(e, next); c++, 1); c}; /* Michael Somos, Dec 02 2016 */

Formula

See the Maple program; f[k](x, y) is the number of sequences s[1], s[2], ..., s[k+2] such that s[1]=x, s[2]=y, s[j-1] <=s[j] <= s[j-2]+s[j-1]. - Emeric Deutsch and Don Reble, Feb 07 2005

Extensions

More terms from Emeric Deutsch and Don Reble, Feb 07 2005

A003513 Number of regular sequences of length n.

Original entry on oeis.org

1, 2, 6, 27, 192, 2280, 47097, 1735803, 115867758, 14137353466, 3172486137982, 1315460211433262, 1011773137731861712, 1448486351628212391462, 3872217739919424676743213
Offset: 2

Views

Author

Keywords

Comments

From Nathaniel Johnston, Jun 29 2023: (Start)
A sequence x_1, ..., x_n is regular if 1 = x_1 <= x_2 <= ... <= x_n and x_j <= Sum_{i=1..j-1} x_i for all j >= 2. It is immediate from this definition that x_2 = 1 and x_j <= 2^(j-2) for all j >= 2.
A sequence x_1, x_2, ..., x_n is regular if and only if (x_2, ..., x_n) is a complete partition of x_2+...+x_n (see A126796 for the definition of a complete partition). As a result, the number of regular sequences with sum equal to n is given by A126796(n-1).
(End)

Examples

			From _Nathaniel Johnston_, Jun 29 2023: (Start)
When n = 4, there are 6 regular sequences:
1,1,1,1
1,1,1,2
1,1,1,3
1,1,2,2
1,1,2,3
1,1,2,4
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.
Cf. A126796.

Programs

  • Maple
    A003513 := proc() local a,b,n ; a := {[1,1]} ; n := 3 ; while true do b := {} ; for s in a do subsa := combinat[choose](s) ; for i in subsa do newa := add(k,k=i) ; if newa >= op(-1,s) then b := b union {[op(s),newa]} ; fi ; od; od; print(n,nops(b) ) ; a := b ; n := n+1 ; od; end: A003513() ; # R. J. Mathar, Oct 22 2007

Extensions

a(9) from R. J. Mathar, Oct 22 2007
a(10) from Sean A. Irvine, Jun 15 2015
a(11)-a(16) from Bert Dobbelaere, Dec 28 2020

A005268 Number of elementary sequences of length n.

Original entry on oeis.org

1, 1, 2, 4, 10, 31, 120, 578, 3422, 24504, 208833, 2086777, 24123293, 318800755, 4766262421, 79874304340, 1488227986802
Offset: 1

Views

Author

Keywords

Comments

In Fishburn-Roberts (1989) it is stated that no recurrence is known. - N. J. A. Sloane, Jan 04 2014

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

Extensions

a(11) corrected and a(12)-a(14) from Sean A. Irvine, Apr 27 2016
a(15)-a(17) from Bert Dobbelaere, Dec 28 2020

A008926 Number of uniquely agreeing sequences.

Original entry on oeis.org

1, 1, 2, 8, 102
Offset: 1

Views

Author

N. J. A. Sloane, Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)

Keywords

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

A234595 Number of elementary sequences of length n, where permutations of the components are taken into account.

Original entry on oeis.org

1, 1, 4, 23, 256, 4647, 128262, 5128503
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2014

Keywords

References

  • Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)

Crossrefs

Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.
Showing 1-5 of 5 results.