A003521 Values of m in the discriminant D = -4*m leading to a new minimum of the L-function of the Dirichlet series L(1) = Sum_{k>=1} Kronecker(D,k)/k.
1, 7, 37, 58, 163, 4687, 30178, 30493, 47338, 83218, 106177, 134773, 288502, 991027
Offset: 1
Examples
With L1(k) = L(1) for D=-4*k: a(1) = 1: L1(1) ~= 0.785398... = Pi/4; L1(2) = 1.1107, L1(3) = 0.9069, L1(4) = 0.7854, L1(5) = 1.4050, L1(6) = 1.2825, all >= a(1); a(2) = 7 because L1(7) = 0.5937 < a(1); a(3) = 37 because L1(k) > a(2) for 8 <= k <= 36, L1(37) = 0.51647 < a(2).
References
- D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796 (Table 7, page 791).
- D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)
Crossrefs
Cf. A003420.
Extensions
New title, a(1) prepended and a(10)-a(14) from Hugo Pfoertner, Feb 03 2020
Comments