cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A331949 Addends k > 0 such that x^2 + k produces a new minimum of its Hardy-Littlewood Constant.

Original entry on oeis.org

1, 2, 5, 11, 14, 26, 41, 89, 101, 194, 314, 341, 446, 689, 1091, 1154, 1889, 2141, 3449, 3506, 5561, 6254, 8126, 8774, 10709, 13166, 15461, 23201, 24569, 30014, 81626, 162686
Offset: 1

Views

Author

Hugo Pfoertner, Feb 04 2020

Keywords

Comments

This sequence is almost identical to A003420. However, there is an additional term 446 and after 30014 the number 81626 follows, while in A003420, 81149 is present between 30014 and 81626. With
C(m) = Product_{p=primes} 1 - Kronecker(-4*m,p)/(p - 1) (Hardy-Littlewood)
L1(m) = Sum_{j>0} Kronecker(-4*m,j)/j (L-function of the Dirichlet series)
the following table shows the differences:
Criterion
decrease increase
k C L1
341 0.28309 2.38177
446 0.28272 2.38014 not in A003420 because L1(446) < L1(341)
689 0.28193 2.39370
...
30014 0.21541 3.08274
81149 0.21560 3.08792 not in this sequence because C(81149) > C(30014)
81626 0.20883 3.17785
162686 0.20478 3.24017

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

Programs

  • PARI
    \\ The function HardyLittlewood2 is provided at the Belabas, Cohen link.
    hl2min=oo; for(add=1,500,my(hl=HardyLittlewood2(n^2+add));if(hl
    				

A003419 Values of m in the discriminant D = 4*m leading to a new minimum of the L-function of the Dirichlet series L(1) = Sum_{k>0} Kronecker(D,k)/k.

Original entry on oeis.org

1, 2, 17, 167, 227, 362, 398, 331427, 430022, 737183, 800663, 821498, 1475858, 2271407, 3009173, 5417453
Offset: 1

Views

Author

Keywords

Comments

The terms a(2)-a(7) are given in Shanks's Table 4 "Lochamps, 4M = Discriminant". This table gives some values of L(1) for larger discriminants, e.g., L(1) = 0.2510... for D = 4*4813372912697. In comparison, L(1) = 0.28422 for D = 4*a(16) = 4*5417453. - Hugo Pfoertner, Feb 07 2020

References

  • D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

New title, a(1) prepended, and a(8)-a(13) from Hugo Pfoertner, Feb 04 2020
a(14)-a(15) from Hugo Pfoertner, Feb 05 2020
a(16) from Hugo Pfoertner, Feb 07 2020

A003420 Values of m in the discriminant D = -4*m leading to a new maximum of the L-function of the Dirichlet series L(1) = Sum_{k=1..oo} Kronecker(D,k)/k.

Original entry on oeis.org

1, 2, 5, 11, 14, 26, 41, 89, 101, 194, 314, 341, 689, 1091, 1154, 1889, 2141, 3449, 3506, 5561, 6254, 8126, 8774, 10709, 13166, 15461, 23201, 24569, 30014, 81149, 81626, 162686, 243374, 644474, 839354, 879941
Offset: 1

Views

Author

Keywords

Comments

In Shanks's Table 5 "Hichamps, -4N = Discriminant", N = 1 is omitted, and N = 23201 is missing. Shanks describes the table as being tentative after N = 24569. In Buell's Table 10 "Successive maxima of L(1) for even discriminants", the values N = 11 and N = 1091 are missing in the D/4 column. The further terms 644474, 839354, 879941, provided there require an independent check. - Hugo Pfoertner, Feb 02 2020

Examples

			a(1) = 1: L(1) for D=-4*1 ~= 0.785398... = Pi/4.
a(2) = 2: L(1) for D=-4*2 ~= 1.11072073... = Pi/(2*sqrt(2)), a(2) > a(1);
L(1) for D=-4*3 ~= 0.90689..., L(1) for D=-4*4 ~= 0.785398..., both < a(2);
a(3) = 5: L(1) for D=-4*5 = 1.40496..., a(3) > a(2).
		

References

  • D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003521.
Cf. A331949, which has almost identical terms.

Extensions

New title, a(1) prepended, missing term 23201 and a(29)-a(33) from Hugo Pfoertner, Feb 02 2020
3 further terms < 10^6 added by Hugo Pfoertner, Aug 27 2022

A342547 Addends k > 0 such that the polynomial x^3 + k produces a record of its Hardy-Littlewood constant.

Original entry on oeis.org

2, 3, 17, 74, 165, 205, 2609, 23602
Offset: 1

Views

Author

Hugo Pfoertner, Apr 29 2021

Keywords

Comments

For more information and references see A331950.
Cubic polynomials with no quadratic terms have a poor yield in generating primes compared to quadratic polynomials. This can be seen when comparing the Hardy-Littlewood constants HL for quadratic polynomials of the form x^2 + k (k given in A003521) where HL(x^2 + 1) = 1.3728..., HL (x^2 + 7) = 1.9730..., ..., HL(x^2 + 991027) = 4.1237..., whereas the best known result for the present sequence, a(8) only leads to HL(x^3 + 23602) = 1.7167...

Examples

			  n  a(n)   Hardy-Littlewood
            constant (rounded)
  1     2   1.298539558
  2     3   1.390543939
  3    17   1.442297580
  4    74   1.451456320
  5   165   1.589487813
  6   205   1.637173422
  7  2609   1.679828689
  8 23602   1.716729673
		

Crossrefs

Cf. A003521 (records for x^2+k), A331950.

A003421 Nonsquare values of m in the discriminant D = 4*m leading to a new maximum of the L-function of the Dirichlet series L(1) = Sum_{k>0} Kronecker(D,k)/k.

Original entry on oeis.org

2, 3, 6, 7, 10, 19, 31, 34, 46, 79, 106, 151, 211, 214, 274, 331, 394, 631, 751, 919, 991, 1054, 1486, 1654, 2146, 2479, 2599, 3826, 5014, 5251, 7459, 8551, 9454, 10651, 13666, 18379, 22234, 32971, 39274, 45046, 48799, 61051, 62386, 74299, 78439, 84319, 111094
Offset: 1

Views

Author

Keywords

Comments

The terms a(1)-a(24) are given in Shanks's Table 6 "Hichamps, 4M = Discriminant". After the term 1654, this table is incomplete and only gives selected values. - Hugo Pfoertner, Feb 07 2020

References

  • D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

New title, a(25)-a(47) from Hugo Pfoertner, Feb 07 2020
Showing 1-5 of 5 results.